We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although stroke rates in Canada are expected to increase dramatically over the next decade, time-driven hyperacute stroke care with thrombolysis increases the likelihood of a good clinical outcome. Following a period of suboptimal performance results for stroke care, our tertiary care center undertook a door-to-needle (DTN) quality improvement initiative. The purpose of our study was to determine if the resulting improved median DTN times and greater proportion of patients treated within 60 minutes of arrival at our emergency department were associated with improved clinical outcomes.
Methods:
Guided by the Donabedian quality framework, we retrospectively reviewed charts of consecutive patients (n = 324) who received thrombolysis pre- and post-quality improvement initiative. Data on patient characteristics, and process and outcome measures were collected. Primary study outcomes included mortality, adverse events, discharge location, and independence at discharge. Data analysis compared proportions with Chi Square and means using the two-tailed t-test and a 0.05 level of significance.
Results:
Median DTN times and the percentage of cases with a DTN ≤60 minutes improved significantly post-intervention (p < 0.001). In-hospital mortality decreased (p = 0.013), and the proportion of favorable versus unfavorable discharge locations improved (p = 0.005). Mortality rates for all study patients with DTN ≤60 versus >60 minutes were also significantly lower (p = 0.044) post-intervention.
Conclusions:
Our quality improvement initiative resulted in timelier care and positively influenced clinical outcomes. This study highlights the need for ongoing, innovative investment strategies to ensure timely hyperacute stroke care and optimal patient outcomes.
Alteplase is an effective treatment for ischaemic stroke patients, and it is widely available at all primary stroke centres. The effectiveness of alteplase is highly time-dependent. Large tertiary centres have reported significant improvements in their door-to-needle (DTN) times. However, these same improvements have not been reported at community hospitals.
Methods
Red Deer Regional Hospital Centre (RDRHC) is a community hospital of 370 beds that serves approximately 150,000 people in their acute stroke catchment area. The RDRHC participated in a provincial DTN improvement initiative, and implemented a streamlined algorithm for the treatment of stroke patients. During this intervention period, they implemented the following changes: early alert of an incoming acute stroke patient to the neurologist and care team, meeting the patient immediately upon arrival, parallel work processes, keeping the patient on the Emergency Medical Service stretcher to the CT scanner, and administering alteplase in the imaging area. Door-to-needle data were collected from July 2007 to December 2017.
Results
A total of 289 patients were treated from July 2007 to December 2017. In the pre-intervention period, 165 patients received alteplase and the median DTN time was 77 minutes [interquartile range (IQR): 60–103 minutes]; in the post-intervention period, 104 patients received alteplase and the median DTN time was 30 minutes (IQR: 22–42 minutes) (p < 0.001). The annual number of patients that received alteplase increased from 9 to 29 in the pre-intervention period to annual numbers of 41 to 63 patients in the post-intervention period.
Conclusion
Community hospitals staffed with community neurologists can achieve median DTN times of 30 minutes or less.
The objective of this study was to evaluate the effect of the Stop Stroke (Pulsara; Bozeman, Montana USA) medical application on door-to-needle (DTN) time in patients presenting to the emergency department (ED) with an acute ischemic stroke (AIS).
Methods
This was a retrospective cohort study of the Good Shepherd Health System (Longview, Texas USA) stroke quality improvement dashboard for a 25-month period from February 2012 through February 2014. Data analysis includes all data from Center for Medicare and Medicaid Services (CMS; Baltimore, Maryland USA) reportable cases receiving Tissue Plasminogen Activator (TPA) for AIS during the study period. The primary outcome was mean DTN times before and after initiating Stop Stroke. Secondary outcome was the effect on the DTN≤60-minute benchmark.
Results
During the study period, there were 533 stroke activations (200 before Stop Stroke implementation and 333 after). A total of 68 patients meeting inclusion criteria were analyzed (34 pre-app and 34 post- app). The observed mean DTN times post-app decreased 21 minutes (77 to 56 minutes), a 28% improvement (P=.001). Further, the patients meeting DTN≤60 minutes improved from 32% (11 of 34) to 82% (28 of 34) after the app’s implementation.
Conclusions
In this cohort of patients with AIS, Stop Stroke improved mean DTN times and number of patients treated within 60 minutes of arrival. These results demonstrate the app’s effect of increasing awareness of suspected AIS and improving coordination of care, evidenced by the magnitude of its effect on treatment times.
DicksonR, NedelcutA, McPeek NedelcutM. Stop Stroke: A Brief Report on Door-to-Needle Times and Performance After Implementing an Acute Care Coordination Medical Application and Implications to Emergency Medical Services. Prehosp Disaster Med. 2017;32(3):343–347.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.