Distributed ledgers, including blockchain and other decentralized databases, are designed to store information online where all trusted network members can update the data with transparency. The dynamics of a ledger’s development can be mathematically represented by a directed acyclic graph (DAG). In this paper, we study a DAG model that considers batch arrivals and random delay of attachment. We analyze the asymptotic behavior of this model by letting the arrival rate go to infinity and the inter-arrival time go to zero. We establish that the number of leaves in the DAG, as well as various random variables characterizing the vertices in the DAG, can be approximated by its fluid limit, represented as the solution to a set of delayed partial differential equations. Furthermore, we establish the stable state of this fluid limit and validate our findings through simulations.