To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a very general Gushel–Mukai (GM) variety of dimension $n\geq 4$, and let $Y$ be a smooth hyperplane section. There are natural pull-back and push-forward functors between the semi-orthogonal components (known as the Kuznetsov components) of the derived categories of $X$ and $Y$. In this paper, we prove that the Bridgeland stability of objects is preserved by both pull-back and push-forward functors. We then explore various applications of this result, such as constructing an eight-dimensional smooth family of Lagrangian subvarieties for each moduli space of stable objects in the Kuznetsov component of a general GM fourfold and proving the projectivity of the moduli spaces of semistable objects of any class in the Kuznetsov component of a general GM threefold, as conjectured by Perry, Pertusi, and Zhao.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.