For a continuous and positive function
$w(\lambda )$,
$\lambda>0$ and
$\mu $ a positive measure on
$(0,\infty )$, we consider the integral transform
$$ \begin{align*} \mathcal{D}( w,\mu ) ( T) :=\int_{0}^{\infty }w(\lambda) ( \lambda +T) ^{-1}\,d\mu ( \lambda ) , \end{align*} $$
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among other things that if B,
$A>0,$ then
$\mathcal {D}( w,\mu ) $ is operator subadditive on
$(0,\infty ) $, that is,
$$ \begin{align*} \mathcal{D}( w,\mu ) ( A) +\mathcal{D}( w,\mu) ( B) \geq \mathcal{D}( w,\mu )(A+B). \end{align*} $$
From this, we derive that if
$f:[0,\infty )\rightarrow \mathbb {R}$ is an operator monotone function on
$[0,\infty )$, then the function
$[ f( t) -f( 0) ] t^{-1}$ is operator subadditive on
$( 0,\infty ) .$ Also, if
$f:[0,\infty )\rightarrow \mathbb {R}$ is an operator convex function on
$[0,\infty )$, then the function
$[ f( t) -f( 0) -f_{+}^{\prime }( 0) t ] t^{-2}$ is operator subadditive on
$( 0,\infty ) .$