A strong coloring on a cardinal
$\kappa $ is a function
$f:[\kappa ]^2\to \kappa $ such that for every
$A\subseteq \kappa $ of full size
$\kappa $, every color
$\unicode{x3b3} <\kappa $ is attained by
$f\restriction [A]^2$. The symbol
$$ \begin{align*} \kappa\nrightarrow[\kappa]^2_{\kappa} \end{align*} $$ asserts the existence of a strong coloring on
$\kappa $.
We introduce the symbol
$$ \begin{align*} \kappa\nrightarrow_p[\kappa]^2_{\kappa} \end{align*} $$ which asserts the existence of a coloring
$f:[\kappa ]^2\to \kappa $ which is strong over a partition
$p:[\kappa ]^2\to \theta $. A coloring f is strong over p if for every
$A\in [\kappa ]^{\kappa }$ there is
$i<\theta $ so that for every color
$\unicode{x3b3} <\kappa $ is attained by
$f\restriction ([A]^2\cap p^{-1}(i))$.
We prove that whenever
$\kappa \nrightarrow [\kappa ]^2_{\kappa }$ holds, also
$\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ holds for an arbitrary finite partition p. Similarly, arbitrary finite p-s can be added to stronger symbols which hold in any model of ZFC. If
$\kappa ^{\theta }=\kappa $, then
$\kappa \nrightarrow _p[\kappa ]^2_{\kappa }$ and stronger symbols, like
$\operatorname {Pr}_1(\kappa ,\kappa ,\kappa ,\chi )_p$ or
$\operatorname {Pr}_0(\kappa ,\kappa ,\kappa ,\aleph _0)_p$, also hold for an arbitrary partition p to
$\theta $ parts.
The symbols
$$ \begin{gather*} \aleph_1\nrightarrow_p[\aleph_1]^2_{\aleph_1},\;\;\; \aleph_1\nrightarrow_p[\aleph_1\circledast \aleph_1]^2_{\aleph_1},\;\;\; \aleph_0\circledast\aleph_1\nrightarrow_p[1\circledast\aleph_1]^2_{\aleph_1}, \\ \operatorname{Pr}_1(\aleph_1,\aleph_1,\aleph_1,\aleph_0)_p,\;\;\;\text{ and } \;\;\; \operatorname{Pr}_0(\aleph_1,\aleph_1,\aleph_1,\aleph_0)_p \end{gather*} $$ hold for an arbitrary countable partition p under the Continuum Hypothesis and are independent over ZFC
$+ \neg $CH.