Let
$R$ be an associative ring with identity. First we prove some results about zero-divisor graphs of reversible rings. Then we study the zero-divisors of the skew power series ring
$R\left[\!\left[ x;\,\alpha\right]\!\right]$ , whenever
$R$ is reversible
$\alpha$ -compatible. Moreover, we compare the diameter and girth of the zero-divisor graphs of
$\Gamma \left( R \right),\,\Gamma \left( R[x;\,\alpha ,\,\delta ] \right)$ , and
$\Gamma \left( R\left[\!\left[ x;\,\alpha\right]\!\right] \right)$ , when
$R$ is reversible and
$\left( \alpha ,\,\delta\right)$ -compatible.