In this paper we propose a set of techniques for a real-time motion capture of a human body. The proposed motion capture system is based on low cost accelerometers, and is capable of identifying the body configuration by extracting gravity-related terms from the sensor data. One sensor unit is composed of 3 accelerometers arranged orthogonally to each other, and is capable of identifying 2 rotating angles of joints with 2 degrees of freedom. A geometric fusion technique is applied to cope with the uncertainty of sensor data. A practical calibration technique is also proposed to handle errors in aligning the sensing axis to the coordination axis. In the case where motion acceleration is not negligible compared with gravity acceleration, a compensation technique to extract gravity acceleration from the sensor data is proposed. Experimental results not only for individual techniques but also for human motion capturing with graphics are included.