To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article deals with isometric dilation and commutant lifting for a class of n-tuples $(n\ge 3)$ of commuting contractions. We show that operator tuples in the class dilate to tuples of commuting isometries of BCL type. As a consequence of such an explicit dilation, we show that their von Neumann inequality holds on a one-dimensional variety of the closed unit polydisc. On the basis of such a dilation, we prove a commutant lifting theorem of Sarason’s type by establishing that every commutant can be lifted to the dilation space in a commuting and norm-preserving manner. This further leads us to find yet another class of n-tuples $(n\ge 3)$ of commuting contractions each of which possesses isometric dilation.
In this article, we prove several refined versions of the classical Bohr inequality for the class of analytic self-mappings on the unit disk $ \mathbb {D} $, class of analytic functions $ f $ defined on $ \mathbb {D} $ such that $\mathrm {Re}\left (f(z)\right )<1 $, and class of subordination to a function g in $ \mathbb {D} $. Consequently, the main results of this article are established as certainly improved versions of several existing results. All the results are proved to be sharp.
Assume a point $z$ lies in the open unit disk $\mathbb{D}$ of the complex plane $\mathbb{C}$ and $f$ is an analytic self-map of $\mathbb{D}$ fixing 0. Then Schwarz’s lemma gives $|f(z)|\leq |z|$, and Dieudonné’s lemma asserts that $|f^{\prime }(z)|\leq \min \{1,(1+|z|^{2})/(4|z|(1-|z|^{2}))\}$. We prove a sharp upper bound for $|f^{\prime \prime }(z)|$ depending only on $|z|$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.