We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we show that stars of more than about 1½ times the solar mass should collapse when they have exhausted their nuclear fuel. If the initial conditions are not too asymmetric, the conditions of theorem 2 should be satisfied and so there should be a singularity. This singularity is however probably hidden from the view of an external observer who sees only a ‘black hole’ where the star once was. We derive a number of properties of such black holes, and show that they probably settle down finally to a Kerr solution.
In §9.1 we discuss stellar collapse, showing how one would expect a closed trapped surface to form around any sufficiently large spherical star at a late stage in its evolution. In §9.2 we discuss the event horizon which seems likely to form around such a collapsing body. In §9.3 we consider the final stationary state to which the solution outside the horizon settles down. This seems to be likely to be one of the Kerr family of solutions. Assuming that this is the case, one can place certain limits on the amount of energy which can be extracted from such solutions.
We establish a one-to-one correspondence between, on the one hand, Finsler structures on the $2$-sphere with constant curvature $1$ and all geodesics closed, and on the other hand, Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and whose geodesics are all closed. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding $\mathbb {CP}(a_1,a_2)\rightarrow \mathbb {CP}(a_1,(a_1+a_2)/2,a_2)$ of weighted projective spaces provide examples of Finsler $2$-spheres of constant curvature whose geodesics are all closed.
In this paper we prove that minimal 3-spheres of CR type with constant sectional curvature c in the complex projective space CPn are all equivariant and therefore the immersion is rigid. The curvature c of the sphere should be c = 1/(m2-1) for some integer m≥ 2, and the full dimension is n = 2m2-3. An explicit analytic expression for such an immersion is given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.