The convolution sum   $\sum{_{m<n/16}\,\sigma (m)\sigma (n\,}-16m)$  is evaluated for all
 $\sum{_{m<n/16}\,\sigma (m)\sigma (n\,}-16m)$  is evaluated for all   $n\,\in \,\mathbb{N}$ . This evaluation is used to determine the number of representations of
 $n\,\in \,\mathbb{N}$ . This evaluation is used to determine the number of representations of   $n$  by the quadratic form
 $n$  by the quadratic form   $x_{1}^{2}\,+\,x_{2}^{2}\,+\,x_{3}^{2}\,+\,x_{4}^{2}\,+\,4x_{5}^{2}\,+\,4x_{6}^{2}\,+\,4x_{7}^{2}\,+\,4x_{8}^{2}$ .
 $x_{1}^{2}\,+\,x_{2}^{2}\,+\,x_{3}^{2}\,+\,x_{4}^{2}\,+\,4x_{5}^{2}\,+\,4x_{6}^{2}\,+\,4x_{7}^{2}\,+\,4x_{8}^{2}$ .