Competing and complementary risk (CCR) problems are often modelled using a class of distributions of the maximum, or minimum, of a random number of independent and identically distributed random variables, called the CCR class of distributions. While CCR distributions generally do not have an easy-to-calculate density or probability mass function, two special cases, namely the Poisson–exponential and exponential–geometric distributions, can easily be calculated. Hence, it is of interest to approximate CCR distributions with these simpler distributions. In this paper, we develop Stein’s method for the CCR class of distributions to provide a general comparison method for bounding the distance between two CCR distributions, and we contrast this approach with bounds obtained using a Lindeberg argument. We detail the comparisons for Poisson–exponential, and exponential–geometric distributions.