In this article, we classify irregular threefolds with numerically trivial canonical divisors in positive characteristic. For a threefold, if its Albanese dimension is not maximal, then the Albanese morphism will induce a fibration which either maps to a curve or is fibered by curves. In practice, we treat arbitrary dimensional irregular varieties with either one-dimensional Albanese fiber or one-dimensional Albanese image. We prove that such a variety carries another fibration transversal to its Albanese morphism (a “bi-fibration” structure), which is an analog structure of bielliptic or quasi-bielliptic surfaces. In turn, we give an explicit description of irregular threefolds with trivial canonical divisors.