To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive the exact asymptotics of $\mathbb{P} {\{\sup\nolimits_{\boldsymbol{t}\in {\mathcal{A}}}X(\boldsymbol{t})>u \}} \textrm{ as}\ u\to\infty,$ for a centered Gaussian field $X({\boldsymbol{t}}),\ {\boldsymbol{t}}\in \mathcal{A}\subset\mathbb{R}^n$, $n>1$ with continuous sample paths almost surely, for which $\arg \max_{\boldsymbol{t}\in {\mathcal{A}}} {\mathrm{Var}}(X(\boldsymbol{t}))$ is a Jordan set with a finite and positive Lebesgue measure of dimension $k\le n$ and its dependence structure is not necessarily locally stationary. Our findings are applied to derive the asymptotics of tail probabilities related to performance tables and chi processes, particularly when the covariance structure is not locally stationary.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.