Poor socket fit is the leading cause of prosthetic limb discomfort. However, currently clinicians have limited objective data to support and improve socket design. Finite element analysis predictions might help improve the fit, but this requires internal and external anatomy models. While external 3D surface scans are often collected in routine clinical computer-aided design practice, detailed internal anatomy imaging (e.g., MRI or CT) is not. We present a prototype statistical shape model (SSM) describing the transtibial amputated residual limb, generated using a sparse dataset of 33 MRI and CT scans. To describe the maximal shape variance, training scans are size-normalized to their estimated intact tibia length. A mean limb is calculated and principal component analysis used to extract the principal modes of shape variation. In an illustrative use case, the model is interrogated to predict internal bone shapes given a skin surface shape. The model attributes ~52% of shape variance to amputation height and ~17% to slender-bulbous soft tissue profile. In cross-validation, left-out shapes influenced the mean by 0.14–0.88 mm root mean square error (RMSE) surface deviation (median 0.42 mm), and left-out shapes were recreated with 1.82–5.75 mm RMSE (median 3.40 mm). Linear regression between mode scores from skin-only- and full-model SSMs allowed prediction of bone shapes from the skin with 3.56–10.9 mm RMSE (median 6.66 mm). The model showed the feasibility of predicting bone shapes from surface scans, which addresses a key barrier to implementing simulation within clinical practice, and enables more representative prosthetic biomechanics research.