We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a large, compact array antenna that can be expanded in the 2-D plane is proposed for near-field radio frequency identification applications. By the introduction of the fractal structure and corner joint method, the array is easy to expand in the 2-D plane. An antenna element can be divided into a dozen or so loops, and traveling wave distribution makes sure that every loop is excited in a time period. So that a strong and uniform magnetic field could be generated in a large area. As a proof of concept, array antennas with $1 \times 8$, $2 \times 4$, and $3 \times 3$ elements are designed, fabricated, and measured. The measured bandwidth of the antennas covers the entire Chinese standard. Reading distances of the proposed large array antennas achieved up to 57 mm. Results show that the proposed antenna could realize flexibility and extendibility in a large area with stable and uniform magnetic field distribution.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.