Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-03T17:41:25.523Z Has data issue: false hasContentIssue false

Aerodynamic deformation and breakup of wall-attached droplets in axisymmetric stagnation airflow

Published online by Cambridge University Press:  17 March 2025

Peng Kang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Jianfeng Guo
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Kai Mu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Jianling Li
Affiliation:
School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, PR China
Ting Si
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Corresponding author: Kai Mu, mukai@ustc.edu.cn

Abstract

The aerodynamic deformation and breakup of wall-attached droplets in axisymmetric stagnation flow are investigated experimentally. A vertical shock tube is used to generate the shock wave accompanying the post-wave airflow, and the axisymmetric stagnation flow is formed through the impingement of an air stream on a solid wall. For the wall-attached droplets with initially hemispherical profile, four typical droplet deformation and breakup modes can be identified with the continuous increase of the droplet local Weber number, which are the vibrating mode, the compressing mode, the sheet thinning mode and the shear-induced entrainment mode. Quantitative analyses of droplet evolution dynamics are also conducted for the compressing mode and the sheet thinning mode, and the significant differences of air flow separation at the droplet lateral surface between these two modes are revealed. The potential flow model and the energy conservation model are further developed to predict the entire droplet deformation processes. The vibrating frequency and amplitude of droplets under the vibrating mode are predicted by a spring-mass model, and the surface perturbation wavelengths of droplets under the shear-induced entrainment mode are estimated based on the dispersion relation of Kelvin–Helmholtz instability. This work is proposed to give potential guidance for regulating the aerodynamic fragmentation of wall-attached droplets in practical engineering applications.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, Y., Kizu, T., Arai, T., Nariai, H., Chitose, K. & Koyama, K. 2004 Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl. Engng Des. 230 (1-3), 277291.CrossRefGoogle Scholar
Ade, S.S., Chandrala, L.D. & Sahu, K.C. 2023 a Size distribution of a drop undergoing breakup at moderate weber numbers. J. Fluid Mech. 959, A38.CrossRefGoogle Scholar
Ade, S.S., Kirar, P.K., Chandrala, L.D. & Sahu, K.C. 2023 b Droplet size distribution in a swirl airstream using in-line holography technique. J. Fluid Mech. 954, A39.CrossRefGoogle Scholar
Brodkey, R.S. 1967 The Phenomena of Fluid motions.: Reading. Addison-Wesley.Google Scholar
Cebeci, T. & Kafyeke, F. 2003 Aircraft icing. Annu. Rev. Fluid Mech. 35 (1), 1121.CrossRefGoogle Scholar
Chahine, A., Sébilleau, J., Mathis, R. & Legendre, D. 2023 Caterpillar like motion of droplet in a shear flow. Phys. Rev. Fluids 8 (9), 093601.CrossRefGoogle Scholar
Chandra, N.K., Sharma, S., Basu, S. & Kumar, A. 2023 Shock-induced aerobreakup of a polymeric droplet. J. Fluid Mech. 965, A1.CrossRefGoogle Scholar
Chen, Z.Y., Hooshanginejad, A., Kumar, S. & Lee, S. 2022 Droplet dynamics under an impinging air jet. J. Fluid Mech. 943, A32.CrossRefGoogle Scholar
Eral, H.B., ’t Mannetje, D.J.C.M. & Oh, J.M. 2013 Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291 (2), 247260.CrossRefGoogle Scholar
Gao, X.X., Chen, J.Y., Qiu, Y.N., Ding, Y. & Xie, J.L. 2022 Effect of phase change on jet atomization: a direct numerical simulation study. J. Fluid Mech. 935, A16.CrossRefGoogle Scholar
Guida, P., Ceschin, A., Saxena, S., Im, H.G. & Roberts, W.L. 2022 A computational study of thermally induced secondary atomization in multicomponent droplets. J. Fluid Mech. 935, A12.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Guo, J.F., Kang, P., Mu, K., Li, J.L. & Si, T. 2023 On shock induced aerobreakup of a wall-attached droplet. J. Fluid Mech. 971, A31.CrossRefGoogle Scholar
Hadj-Achour, M., Rimbert, N., Gradeck, M. & Meignen, R. 2021 Fragmentation of a liquid metal droplet falling in a water pool. Phys. Fluids 33 (10).CrossRefGoogle Scholar
Hinze, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Homann, F. 1936 Der Einfluß grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Math. Mech. 16 (3), 153164.Google Scholar
Hooshanginejad, A., Dutcher, C., Shelley, M.J. & Lee, S. 2020 Droplet breakup in a stagnation-point flow. J. Fluid Mech. 901, A19.CrossRefGoogle Scholar
Hooshanginejad, A. & Lee, S. 2017 Droplet depinning in a wake. Phys. Rev. Fluids 2 (3), 031601.CrossRefGoogle Scholar
Hooshanginejad, A. & Lee, S. 2022 Dynamics of a partially wetting droplet under wind and gravity. Phys. Rev. Fluids 7 (3), 033601.CrossRefGoogle Scholar
Hsiang, L.P. & Faeth, G.M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21 (4), 545560.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940, A17.CrossRefGoogle Scholar
Kirar, P.K., Soni, S.K., Kolhe, P.S. & Sahu, K.C. 2022 An experimental investigation of droplet morphology in swirl flow. J. Fluid Mech. 938, A6.CrossRefGoogle Scholar
Lamb, H. 1895 Hydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Lv, C., Ji, Z.L., Yang, T., Zhao, H.L. & Zhang, H.W. 2024 Numerical simulation of deformation and breakage of compound droplet in air flow. Phys. Fluids 36 (2), 023306.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Mi, Q., Yi, S.H., Gang, D.D., Lu, X.G. & Liu, X.L. 2023 Research progress of transpiration cooling for aircraft thermal protection. Appl. Therm. Engng 236, 121360.CrossRefGoogle Scholar
Moore, D.W. 1959 The rise of a gas bubble in a viscous liquid. J. Fluid Mech. 6 (1), 113130.CrossRefGoogle Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Qaddah, B., Chapelle, P., Bellot, J.P., Jourdan, J., Kewalramani, G., Deborde, A., Hammes, R. & Rimbert, N. 2024 Primary and secondary breakup of molten Ti64 in an EIGA atomizer for metal powder production. Powder Technol. 438, 119665.CrossRefGoogle Scholar
Ren, Z.X., Wang, B., Xiang, G.M., Zhao, D. & Zheng, L.X. 2019 Supersonic spray combustion subject to scramjets: progress and challenges. Prog. Aerosp. Sci. 105, 4059.CrossRefGoogle Scholar
Rimbert, N., Escobar, S.C., Meignen, R., Hadj-Achour, M. & Gradeck, M. 2020 Spheroidal droplet deformation, oscillation and breakup in uniform outer flow. J. Fluid Mech. 904, A15.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Schmucker, J.A. 2012 Experimental investigation of wind-forced drop stability . PhD thesis, Texas A&M University, USA.Google Scholar
Sharma, S., Chandra, N.K., Kumar, A. & Basu, S. 2023 Shock-induced atomisation of a liquid metal droplet. J. Fluid Mech. 972, A7.CrossRefGoogle Scholar
Shen, S., Li, J.L., Liu, J.H., Si, T., Liu, C., Tang, C.L. & Fan, W. 2019 The effect of the weber number on the droplet deformation and breakup process before a standing wall. Atomiz. Sprays 29 (11), 10051025.CrossRefGoogle Scholar
Sui, Y., Ding, H. & Spelt, P.D.M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46 (1), 97119.CrossRefGoogle Scholar
Tarey, P., Ramaprabhu, P. & McFarland, J.A. 2024 Evolution of a shock-impacted reactive liquid fuel droplet with evaporation effects: a numerical study. Intl J. Multiphase Flow 174, 104744.CrossRefGoogle Scholar
Theofanous, T.G. 2011 Aerobreakup of newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43 (1), 661690.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103.CrossRefGoogle Scholar
Theofanous, T.G., Li, G.J., Dinh, T.N. & Chang, C.H. 2007 Aerobreakup in disturbed subsonic and supersonic flow fields. J. Fluid Mech. 593, 131170.CrossRefGoogle Scholar
Villermaux, E. 1998 Mixing and spray formation in coaxial jets. J. Propul. Power 14 (5), 807817.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Wang, Z.Y., Yao, F., Zhao, H., Shi, Z.H. & Liu, H.F. 2023 Hemline breakup of gel drops subjected to a continuous air flow. J. Fluid Mech. 959 (9), A12.CrossRefGoogle Scholar
White, E.B. & Schmucker, J.A. 2008 A runback criterion for water drops in a turbulent accelerated boundary layer. J. Fluids Engng 130 (6), 061302.CrossRefGoogle Scholar
White, E.B. & Schmucker, J.A. 2021 Wind-and gravity-forced drop depinning. Phys. Rev. Fluids 6 (2), 023601.CrossRefGoogle Scholar
Xu, Z.K., Wang, T.Y. & Che, Z.Z. 2020 Droplet deformation and breakup in shear flow of air. Phys. Fluids 32 (5), 052109.CrossRefGoogle Scholar
Xu, Z.K., Wang, T.Y. & Che, Z.Z. 2022 Droplet breakup in airflow with strong shear effect. J. Fluid Mech. 941, A54.CrossRefGoogle Scholar
Yi, X.Y., Zhu, Y.J., Yang, J.M., Wang, T. & Sun, M.Y. 2017 Rear-surface deformation of a water drop in aero-breakup of shear mode. Chin. Phys. Lett. 34 (8), 084701.CrossRefGoogle Scholar
Zhang, X.Q., Newton, J.D., Yarusevych, S. & Peterson, S.D. 2024 Depinning of water droplets from a horizontal solid surface by wall-bounded shear flows. Phys. Rev. Fluids 9 (3), 034004.CrossRefGoogle Scholar
Zhang, Z.C., Emami, R.Y. & Amirfazli, A. 2023 Effects of surface wettability on the aerodynamics of wind-driven droplets at the verge of shedding. Phys. Fluids 35 (1), 017129.CrossRefGoogle Scholar
Supplementary material: File

Kang et al. supplementary material movie 1

PIV measurement of the axisymmetric stagnation airflow field close to the solid wall.
Download Kang et al. supplementary material movie 1(File)
File 9.3 MB
Supplementary material: File

Kang et al. supplementary material movie 2

Side view of the aerodynamic deformation and breakup process of hemispherical droplets under four modes.
Download Kang et al. supplementary material movie 2(File)
File 1.5 MB
Supplementary material: File

Kang et al. supplementary material movie 3

Oblique front view of experiment results.
Download Kang et al. supplementary material movie 3(File)
File 3.9 MB