Hostname: page-component-7f64f4797f-m2b9p Total loading time: 0 Render date: 2025-11-04T00:23:36.025Z Has data issue: false hasContentIssue false

Type synthesis, analysis, and prototyping of 4R1H mechanisms

Published online by Cambridge University Press:  09 December 2024

Alexey Fomin*
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
Anton Antonov
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
Victor Glazunov
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
*
Corresponding author: Alexey Fomin; Email: alexey-nvkz@mail.ru

Abstract

The article introduces a novel class of 4R1H mechanisms, where 4R indicates four revolute joints and 1H indicates one helical joint. The paper starts with the type synthesis of these mechanisms, which involves combining two kinematic chains with planar and cylindrical motion types into a single closed-loop kinematic chain. If we fix any link in such a chain, we get a workable mechanism. The synthesis procedure considers two options for the relative arrangement of these two kinematic chains. Adding an H joint to the kinematic chain allows us to design mechanisms whose output link performs spatial motion. Using the proposed synthesis procedure, we develop a family of 4R1H mechanisms. Next, we choose one mechanism as a representative example and consider its mobility, singularity, kinematic, and dynamic analysis. Using screw theory, we confirm the mechanism has one degree of freedom and determine its singular configurations. Kinematic analysis provides closed-form expressions to calculate displacements, velocities, and accelerations of all the mechanism links. Dynamic analysis uses these results to compute the motor torque required for one motion cycle. To verify the suggested analytical algorithms and obtained results, we use computer-aided design tools, which allow us to develop virtual and physical prototypes.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Grübler, M., “Allgemeine Eigenschaften der zwangläufigen ebenen kinematischen ketten,” Civilingenieur 29, 167200 (1883).Google Scholar
Assur, L. V., “Investigation of plane hinged mechanisms with lower pairs from the point of view of their structure and classification,” (in Russian) Bull. Petrograd Polytech. Inst. 20, 329386 (1913).Google Scholar
Dobrovolsky, V. V. and Artobolevsky, I. I., Structure and Classification of Mechanisms (in Russian) (USSR Academy of Sciences Publishing House, Moscow, 1939).Google Scholar
Freudenstein, F. and Dobrjanskyj, L., “On a theory for the type synthesis of mechanisms,” In: Applied Mechanics (Görtler, H., ed.) (Springer, Berlin–Heidelberg, 1966), pp. 420428. doi:10.1007/978-3-662-29364-5_57.CrossRefGoogle Scholar
Hunt, K. H., Kinematic Geometry of Mechanisms (Oxford University Press, Oxford, 1978).Google Scholar
Tsai, L.-W., Mechanism Design: Enumeration of Kinematic Structures According to Function (CRC Press, Boca Raton, 2000). doi: 10.1201/9780367802790.CrossRefGoogle Scholar
Kong, X. and Gosselin, C., Type Synthesis of Parallel Mechanisms (Springer, Berlin–Heidelberg, 2007). doi: 10.1007/978-3-540-71990-8. Google Scholar
Gogu, G., Structural Synthesis of Parallel Robots. Part 1: Methodology (Springer, Dordrecht, 2008). doi: 10.1007/978-1-4020-5710-6.CrossRefGoogle Scholar
Kuo, C.-H. and Dai, J. S., “Task-oriented structure synthesis of a class of parallel manipulators using motion constraint generator,” Mech. Mach. Theory 70, 394406 (2013). doi: 10.1016/j.mechmachtheory.2013.08.010.CrossRefGoogle Scholar
Li, Q., Hervé, J. M. and Ye, W., Geometric Method for Type Synthesis of Parallel Manipulators (Springer, Singapore, 2020). doi: 10.1007/978-981-13-8755-5.CrossRefGoogle Scholar
Artobolevsky, I. I., Mechanisms in Modern Engineering Design, I–V (Mir Publishers, Moscow, 1976–1980). Google Scholar
Liang, C., Ceccarelli, M. and Takeda, Y., “Operation analysis of a Chebyshev-pantograph leg mechanism for a single DOF biped robot,” Front. Mech. Eng. 7(4), 357370 (2012). doi: 10.1007/s11465-012-0340-5.CrossRefGoogle Scholar
Zhang, Z., Yang, Q., Gui, S., Chang, B., Zhao, J., Yang, H. and Chen, D., “Mechanism design for locust-inspired robot with one-DOF leg based on jumping stability,” Mech. Mach. Theory 133, 584605 (2019). doi: 10.1016/j.mechmachtheory.2018.12.012.CrossRefGoogle Scholar
Lang, R. J., Brown, N., Ignaut, B., Magleby, S. and Howell, L., “Rigidly foldable thick origami using designed-offset linkages,” J. Mech. Robot. 12(2), 021106 (2020). doi: 10.1115/1.4045940.CrossRefGoogle Scholar
Deng, Z., Huang, H., Li, B. and Liu, R., “Synthesis of deployable/foldable single loop mechanisms with revolute joints,” J. Mech. Robot. 3(3), 031006 (2011). doi:10.1115/1.4004029.CrossRefGoogle Scholar
Gonçalves, R. S., Rodrigues, L. A. O., Humbert, R. and Carbone, G., “A user-friendly nonmotorized device for ankle rehabilitation,” Robotics 12(2), 32 (2023). doi: 10.3390/robotics12020032.CrossRefGoogle Scholar
Zhao, P., Zhu, L., Zi, B. and Li, X., “Design of planar 1-DOF cam-linkages for lower-limb rehabilitation via kinematic-mapping motion synthesis framework,” J. Mech. Robot. 11(4), 041006 (2019). doi: 10.1115/1.4043459.CrossRefGoogle Scholar
Robson, N., Ghosh, S. and Soh, G. S., “Kinematic synthesis and design of the robust closed loop articulated minimally actuated (CLAM) hand,” Robotica 38(11), 19211939 (2020). doi: 10.1017/S0263574719001723.CrossRefGoogle Scholar
Chen, K., Lai, T., Yang, F., Zhang, J. and Yao, L., “A one-DOF compliant gripper mechanism with four identical twofold-symmetric Bricard linkages,” Robotica 41(4), 10981114 (2023). doi: 10.1017/S0263574722001503.CrossRefGoogle Scholar
Fomin, A. and Ivanov, W., “Development of a mixing mechanism with a complex motion of the end-effector,” Stroj. Vestn. – J. Mech. Eng. 65(5), 319325 (2019). doi: 10.5545/sv-jme.2018.5965.CrossRefGoogle Scholar
Fomin, A. S. and Antonov, A. V., “Structural synthesis and analysis of spatial mechanisms designed from planar- and screw-type kinematic chains,” J. Mach. Manuf. Reliab. 53(7), 2430 (2024). doi: 10.1134/S1052618824700341.CrossRefGoogle Scholar
Fomin, A., Antonov, A., Glazunov, V. and Filippov, G., “Design, mobility and kinematic analysis of a 4R1H mechanism,” In: Advances in Mechanism and Machine Science 3 (Okada, M., ed.) (Springer, Cham, 2024), pp. 395403. doi:10.1007/978-3-031-45709-8_39.CrossRefGoogle Scholar
Zhao, J., Li, B., Yang, X. and Yu, H., “Geometrical method to determine the reciprocal screws and applications to parallel manipulators,” Robotica 27(6), 929940 (2009). doi: 10.1017/S0263574709005359.CrossRefGoogle Scholar
Carricato, M. and Zlatanov, D., “Persistent screw systems,” Mech. Mach. Theory 73, 296313 (2014). doi: 10.1016/j.mechmachtheory.2013.11.008.CrossRefGoogle Scholar
Song, Y., Kang, X. and Dai, J. S., “Instantaneous mobility analysis using the twist space intersection approach for parallel mechanisms,” Mech. Mach. Theory 151, 103866 (2020). doi: 10.1016/j.mechmachtheory.2020.103866.CrossRefGoogle Scholar
Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B., “Julia: a fresh approach to numerical computing,” SIAM Review 59(1), 6598 (2017). doi: 10.1137/141000671.CrossRefGoogle Scholar
Gowda, S., Ma, Y., Cheli, A., Gwóźzdź, M., Shah, V. B., Edelman, A. and Rackauckas, C., “High-performance symbolic-numerics via multiple dispatch,” ACM Commun. Comput. Algebra 55(3), 9296 (2021). doi: 10.1145/3511528.3511535.CrossRefGoogle Scholar
Di Gregorio, R., “Singularity analysis of spatial single-DOF mechanisms based on the locations of the instantaneous screw axes,” Mech. Mach. Theory 189, 105438 (2023). doi: 10.1016/j.mechmachtheory.2023.105438.CrossRefGoogle Scholar
Müller, A. and Zlatanov, D., Singular Configurations of Mechanisms and Manipulators (Springer, Cham, 2019). doi: 10.1007/978-3-030-05219-5.CrossRefGoogle Scholar
McCarthy, J. M. and Soh, G. S., Geometric Design of Linkages, 2nd ed. (Springer, New York, 2011). doi: 10.1007/978-1-4419-7892-9.CrossRefGoogle Scholar
Pathak, V. K., Singh, R., Sharma, A., Kumar, R. and Chakraborty, D., “A historical review on the computational techniques for mechanism synthesis: developments up to 2022,” Arch. Computat. Methods Eng. 30(2), 11311156 (2023). doi: 10.1007/s11831-022-09829-1.CrossRefGoogle Scholar
Waldron, K. J. and Schmiedeler, J., “Kinematics,” In: Springer Handbook of Robotics (Siciliano, M. and Khatib, O., ed.), 2nd ed. (Springer, Cham, 2016) pp. 1136. doi: 10.1007/978-3-319-32552-1_2.CrossRefGoogle Scholar
Wang, Z., Li, H. and Sun, N., “High-efficiency inverse dynamics modeling of parallel posture alignment mechanism with actuation redundancy,” Robotica 41(9), 26682687 (2023). doi: 10.1017/S0263574723000590.CrossRefGoogle Scholar
Roithmayr, C. M. and Hodges, D. H., Dynamics: Theory and Application of Kane’s Method (Cambridge University Press, Cambridge, 2016). doi: 10.1017/CBO9781139047524.Google Scholar
Feng, R., Zhang, P., Li, J. and Baoyin, H., “Kinetic and dynamic modeling of single actuator wave-like robot,” Robotica 37(11), 19711986 (2019). doi: 10.1017/S0263574719000389.CrossRefGoogle Scholar
Enferadi, J. and Jafari, K., “A Kane’s based algorithm for closed-form dynamic analysis of a new design of a 3RSS-S spherical parallel manipulator,” Multibody Syst. Dyn. 49(4), 377394 (2020). doi: 10.1007/s11044-020-09736-y.CrossRefGoogle Scholar
Liu, X., Cai, Y., Liu, W., Zhang, L. and Hu, C., “Performance evaluation of a special 6-PUS type parallel manipulator,” Robotica 40(3), 505519 (2022). doi: 10.1017/S0263574721000655.CrossRefGoogle Scholar
Cheng, C., Yuan, X., Yang, N., Luo, W., Zeng, F. and Zhang, Z., “A highly efficient computational strategy to model the inverse dynamics of a novel 4-DOF parallel mechanism with direct constraints from the base at two point-contact higher kinematic pairs,” J. Braz. Soc. Mech. Sci. Eng. 45(5), 268 (2023). doi: 10.1007/s40430-023-04188-9.CrossRefGoogle Scholar
Callejo, A., Gholami, F., Enzenhöfer, A. and Kövecses, J., “Unique minimum norm solution to redundant reaction forces in multibody systems,” Mech. Mach. Theory 116, 310325 (2017). doi: 10.1016/j.mechmachtheory.2017.06.001.CrossRefGoogle Scholar
Farhat, N., Mata, V., Page, Á. and Díaz-Rodríguez, M., “Dynamic simulation of a parallel robot: Coulomb friction and stick–slip in robot joints,” Robotica 28(1), 3545 (2010). doi: 10.1017/S0263574709005530.CrossRefGoogle Scholar
Biagiotti, L. and Melchiorri, C.Trajectory Planning for Automatic Machines and Robots (Springer, Berlin–Heidelberg, 2008). doi: 10.1007/978-3-540-85629-0.Google Scholar
Chen, G., Wang, J., Wang, H., Chen, C., Parenti-Castelli, V. and Angeles, J., “Design and validation of a spatial two-limb 3R1T parallel manipulator with remote center-of-motion,” Mech. Mach. Theory 149, 103807 (2020). doi: 10.1016/j.mechmachtheory.2020.103807.CrossRefGoogle Scholar
Li, L., Fang, Y. and Wang, L., “Type synthesis of single-loop 3T1R-parallel mechanisms with a multi-DOF drive system,” Mech. Mach. Theory 163, 104373 (2021). doi: 10.1016/j.mechmachtheory.2021.104373.CrossRefGoogle Scholar
Harlecki, A. and Urbaś, A., “Modelling friction in the dynamics analysis of selected one-DOF spatial linkage mechanisms,” Meccanica 52(1–2), 403420 (2017). doi: 10.1007/s11012-016-0390-6.CrossRefGoogle Scholar
Liu, W.-L., Xu, Y.-D., Yao, J.-T. and Zhao, Y.-S., “Methods for force analysis of overconstrained parallel mechanisms: a review,” Chin. J. Mech. Eng. 30(6), 14601472 (2017). doi: 10.1007/s10033-017-0199-9.CrossRefGoogle Scholar
Wojtyra, M., Pȩkal, M. and Fraczek, J., “Utilization of the moore-penrose inverse in the modeling of overconstrained mechanisms with frictionless and frictional joints,” Mech. Mach. Theory 153, 103999 (2020). doi: 10.1016/j.mechmachtheory.2020.103999.CrossRefGoogle Scholar