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  Abstract
  We report an experimental and theoretical study of the global stability and nonlinear dynamics of vertical jets of viscous liquid confined in the axial direction due to their impact on a bath of the same liquid. Previous works demonstrated that in the absence of axial confinement the steady liquid thread becomes unstable due to an axisymmetric global mode for values of the flow rate, [image: ]$Q$, below a certain critical value, [image: ]$Q_{c}$, giving rise to oscillations of increasing amplitude that finally lead to a dripping regime (Sauter & Buggisch, J. Fluid Mech., vol. 533, 2005, pp. 237–257; Rubio-Rubio et al., J. Fluid Mech., vol. 729, 2013, pp. 471–483). Here we focus on the effect of the jet length, [image: ]$L$, on the transitions that take place for decreasing values of [image: ]$Q$. The linear stability analysis shows good agreement with our experiments, revealing that [image: ]$Q_{c}$ increases monotonically with [image: ]$L$, reaching the semi-infinite jet asymptote for sufficiently large values of [image: ]$L$. Moreover, as [image: ]$L$ decreases a quasi-static limit is reached, whereby [image: ]$Q_{c}\rightarrow 0$ and the neutral conditions are given by a critical length determined by hydrostatics. Our experiments have also revealed the existence of a new regime intermediate between steady jetting and dripping, in which the thread reaches a limit-cycle state without breakup. We thus show that there exist three possible states depending on the values of the control parameters, namely steady jetting, oscillatory jetting and dripping. For two different combinations of liquid viscosity, [image: ]$\unicode[STIX]{x1D708}$, and injector radius, [image: ]$R$, the boundaries separating these regimes have been determined in the [image: ]$(Q,L)$ parameter plane, showing that steady jetting exists for small enough values of [image: ]$L$ or large enough values of [image: ]$Q$, dripping prevails for small enough values of [image: ]$Q$ or sufficiently large values of [image: ]$L$, and oscillatory jetting takes place in an intermediate region whose size increases with [image: ]$\unicode[STIX]{x1D708}$ and decreases with [image: ]$R$.
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 Martínez-Calvo et al. supplementary movie 1
 Globally stable jet of silicone oil with a viscosity of 500 cSt injected through a needle of 3.5 mm diameter, that impinges on the free surface of a reservoir of the same liquid placed at a distance of 16.6 mm from the needle outlet. The liquid flow rate decreases smoothly from 3.6 to 3.5 ml/min, illustrating the steady jetting regime. The movie was acquired at a rate of 400 images per second, and is displayed at 60 images per second.


 [image: Download Martínez-Calvo et al. supplementary movie 1(Video)] 
     
         
         
             
             
        
    



 
 
  

  
 
Video
1.9 MB



[image: alt] 
     
         
         
    



 Martínez-Calvo et al. supplementary movie 2
 Globally unstable jet of silicone oil with a viscosity of 500 cSt injected through a needle of 3.5 mm diameter, that impinges on the free surface of a reservoir of the same liquid placed at a distance of 16.6 mm from the needle outlet. The flow rate decreases smoothly from 3.5 to 3.4 ml/min, illustrating the axisymmetric oscillatory jetting state. The movie was acquired at a rate of 400 images per second, and is displayed at 60 images per second.
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 Martínez-Calvo et al. supplementary movie 3
 Globally unstable jet of silicone oil with a viscosity of 500 cSt injected through a needle of 3.5 mm diameter, that impinges on the free surface of a reservoir of the same liquid placed at a distance of 16.6 mm from the needle outlet. The flow rate decreases smoothly from 3.4 to 3.3 ml/min, illustrating the transition from oscillatory jetting to dripping. The movie was acquired at a rate of 400 images per second, and is displayed at 60 images per second.
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 Martínez-Calvo et al. supplementary movie 4
 Numerical simulation of a globally unstable jet of silicone oil with a viscosity of 500 cSt injected through a needle of 3.5 mm diameter at a flow rate of 3.3 ml/min, impinging on the free surface of a reservoir of the same liquid placed at a distance of 16.6 mm from the needle outlet. A slight perturbation around the steady solution of the one-dimensional model is used as initial for the simulation. The movie illustrates the evolution of the jet towards the breakup of a thin filament that connects a meniscus region attached to the injector and the liquid bath. Although the subsequent dripping state established after pinch-off cannot be captured with our numerical code, the numerical evolution resembles the experiment shown in movie 3 for the same values of the control parameters.
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 Martínez-Calvo et al. supplementary movie 5
 Globally unstable jet of silicone oil with a viscosity of 1000 cSt injected through a needle of 3 mm diameter, that impinges on the free surface of a reservoir of the same liquid placed at a distance of 34.9 mm from the needle outlet. The flow rate decreases smoothly from 3.2 to 3.1 ml/min, illustrating the non-axisymmetric oscillatory jetting state with intermittent coiling. The movie was acquired at a rate of 400 images per second, and is displayed at 60 images per second.
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