Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T03:33:05.299Z Has data issue: false hasContentIssue false

9 - Iron deficiency, folate, and vitamin B12 deficiency in pregnancy, obstetrics, and gynecology

Published online by Cambridge University Press:  01 February 2010

William F. Baker Jr., M.D., F.A.C.P.
Affiliation:
Associate Clinical Professor of Medicine Center for Health Sciences, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA Thrombosis, Hemostasis and Special Hematology Clinic, Kern Medical Center, Bakersfield, California, USA
Ray Lee M.D.
Affiliation:
Associate Professor of Internal Medicine, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Anemia is the single most common hematological problem faced by women. The most common anemia are iron deficiency anemia and folate deficiency megaloblastic anemia. Iron deficiency alone affects nearly 20% of the world's population. Approximately 51% of pregnant women are anemic. This includes a prevalence of 56% in developing countries and 18% in developed countries. Among these, 43% of women from developing countries and 12% of women from developed countries were already anemic, preconception. The WHO has estimated that considering all forms of anemia, from 16,800 to 28,000 women of reproductive age die annually from anemia, with the greatest risk in younger women. Of all anemias diagnosed during pregnancy, 75% are due to iron deficiency.

The systemic effects of anemia of any cause may result in significant morbidity. Deficiencies of iron, folate and vitamin B12 result in unique clinical consequences. These are manifested throughout life. The underlying etiologies of each deficiency state may be somewhat different pre-puberty, during the child bearing years and post menopause. During pregnancy, the adverse effects of iron, folate and vitamin B12 deficiency extend beyond the health of the mother to the developing fetus. This chapter is divided into two sections. The first reviews the most common type of anemia, iron deficiency. The second section examines the deficiencies of folate and vitamin B12. Because of the close interrelationship between folate, vitamin B12 and homocysteine in the methionine synthesis pathway, hyperhomocysteinemia is also discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sifakis, S. and Pharmakides, G., Anemia in pregnancy. Ann. N. Y. Acad. Sci., 2000. 900: 125–36.CrossRefGoogle ScholarPubMed
Bergmann, R. L., et al., Iron deficiency is prevalent in a sample of pregnant women at delivery in Germany. Eur. J. Obstet. Gynecol. Reprod. Biol., 2002. 102(2): 155–60.CrossRefGoogle Scholar
Allen, L. H., Anemia and iron deficiency: effects on pregnancy outcome. Am. J. Clin. Nutr., 2000. 71(5 Suppl): 1280–4S.CrossRefGoogle ScholarPubMed
Brabin, B. J., Hakimi, M., and Pelletier, D., An analysis of anemia and pregnancy-related maternal mortality. J. Nutr., 2001. 131(2S-2): 604–14S; discussion 614–15S.CrossRefGoogle ScholarPubMed
Looker, A. C., et al., Prevalence of iron deficiency in the United States. Jama, 1997. 277(12): 973–6.CrossRefGoogle ScholarPubMed
Schumann, K., Elsenhans, B., and Maurer, A., Iron supplementation. J. Trace. Elem. Med. Biol., 1998. 12(3): 129–40.CrossRefGoogle ScholarPubMed
Viteri, F. E., A new concept in the control of iron deficiency: community-based preventive supplementation of at-risk groups by the weekly intake of iron supplements. Biomed. Environ. Sci., 1998. 11(1): 46–60.Google ScholarPubMed
Broek, N. R., et al., Iron status in pregnant women: which measurements are valid?Br. J. Haematol., 1998. 103(3): 817–24.CrossRefGoogle ScholarPubMed
Singh, K., Fong, Y. F., and Arulkumaran, S., The role of prophylactic iron supplementation in pregnancy. Int. J. Food. Sci. Nutr., 1998. 49(5): 383–9.CrossRefGoogle ScholarPubMed
Adish, A. A., et al., Risk factors for iron deficiency anaemia in preschool children in northern Ethiopia. Public Health Nutr., 1999. 2(3): 243–52.CrossRefGoogle ScholarPubMed
Verhoeff, F. H., et al., An analysis of the determinants of anaemia in pregnant women in rural Malawi–a basis for action. Ann. Trop. Med. Parasitol., 1999. 93(2): 119–33.Google Scholar
Akesson, A., et al., Serum transferrin receptor: a specific marker of iron deficiency in pregnancy. Am. J. Clin. Nutr., 1998. 68(6): 1241–6.CrossRefGoogle ScholarPubMed
Niederau, C., et al., Screening for hemochromatosis and iron deficiency in employees and primary care patients in Western Germany. Ann. Intern. Med., 1998. 128(5): 337–45.CrossRefGoogle ScholarPubMed
Blot, I., Diallo, D., and Tchernia, G., Iron deficiency in pregnancy: effects on the newborn. Curr. Opin. Hematol., 1999. 6(2): 65–70.CrossRefGoogle ScholarPubMed
Bodnar, L. M., Cogswell, M. E., and Scanlon, K. S., Low income postpartum women are at risk of iron deficiency. J. Nutr., 2002. 132(8): 2298–302.CrossRefGoogle ScholarPubMed
Kuizon, M. D., et al., Assessment of iron status of Filipino pregnant women. Southeast Asian J. Trop. Med. Public Health, 1989. 20(3): 461–70.Google ScholarPubMed
Baynes, R. D., Iron deficiency, In Iron Metabolism in Health and Disease, ed. Brock, J. H., 1994, W. B. Saunders: London, UK. p. 189–225.Google Scholar
Fleming, A. F., The aetiology of severe anaemia in pregnancy in Ndola, Zambia. Ann. Trop. Med. Parasitol., 1989. 83(1): 37–49.CrossRefGoogle ScholarPubMed
Freire, W. B., Hemoglobin as a predictor of response to iron therapy and its use in screening and prevalence estimates. Am. J. Clin. Nutr., 1989. 50(6): 1442–9.CrossRefGoogle ScholarPubMed
Strain, J. J., et al., Iron sufficiency in the population of Northern Ireland: estimates from blood measurements. Br. J. Nutr., 1990. 64(1): 219–24.CrossRefGoogle ScholarPubMed
Usanga, E. A., Iron stores of Nigerian blood donors as assessed by serum ferritin concentration. Cent. Afr. J. Med., 1990. 36(7): 170–3.Google ScholarPubMed
Yip, R., Iron deficiency: contemporary scientific issues and international programmatic approaches. J. Nutr., 1994. 124(8 Suppl): 1479–90S.CrossRefGoogle ScholarPubMed
Yip, R., et al., Declining prevalence of anemia among low-income children in the United States. Jama, 1987. 258(12): 1619–23.CrossRefGoogle ScholarPubMed
Perry, G. S., Yip, R., and Zyrkowski, C., Nutritional risk factors among low-income pregnant US women: the Centers for Disease Control and Prevention (CDC) Pregnancy Nutrition Surveillance System, 1979 through 1993. Semin. Perinatol., 1995. 19(3): 211–21.CrossRefGoogle ScholarPubMed
Taylor, D. J., et al., Effect of iron supplementation on serum ferritin levels during and after pregnancy. Br. J. Obstet. Gynaecol., 1982. 89(12): 1011–17.CrossRefGoogle ScholarPubMed
Puolakka, J., et al., Serum ferritin in the diagnosis of anemia during pregnancy. Acta. Obstet. Gynecol. Scand. Suppl., 1980. 95: 57–63.CrossRefGoogle Scholar
Kepczyk, T., et al., A prospective, multidisciplinary evaluation of premenopausal women with iron-deficiency anemia. Am. J. Gastroenterol., 1999. 94(1): 109–15.CrossRefGoogle ScholarPubMed
Rockey, D. C., Gastrointestinal tract evaluation in patients with iron deficiency anemia. Semin. Gastrointest. Dis., 1999. 10(2): 53–64.Google ScholarPubMed
Bothwell, T. H., In Iron Metabolism in Man, ed. Charlton, R. W., 1979, Blackwell Scientific Publications: Oxford, UK.Google Scholar
Brittenham, G. M., Disorders or iron metabolism: iron deficiency and overload. 2nd edn. Hematology: Basic Principles and Practice, 1995, New York, NY: Churchill Livingstone. pp. 492–523.
Viteri, F. E., Effective iron supplementation does not happen in isolation. Am. J. Clin. Nutr., 1997. 65: 889–90.CrossRefGoogle Scholar
Crosby, W. H., Physiology and pathophysiology of iron metabolism. Hosp. Pract., (Off. Edn.)., 1991. 26 (Suppl 3): 7–10.CrossRefGoogle ScholarPubMed
Groopman, J. E. and Itri, L. M., Chemotherapy-induced anemia in adults: incidence and treatment. J. Natl. Cancer Inst., 1999. 91: 1616–34.CrossRefGoogle ScholarPubMed
Goodman, R. A., Current Trends-CDC criteria for anemia in children and child-bearing aged women. MMWR Morb. Mortal Weekly Rep., 1989. 38(22): 400–4.Google Scholar
Green, R., Disorders of inadequate iron. Hosp. Pract., (Off. Edn)., 1991. 26 (Suppl 3): 25–9.CrossRefGoogle ScholarPubMed
Bothwell, T. H., et al., Nutritional iron requirements and food iron absorption. J. Intern. Med., 1989. 226(5): 357–65.CrossRefGoogle ScholarPubMed
Woods, S., DeMarco, T., and Friedland, M., Iron metabolism. Am. J. Gastroenterol., 1990. 85(1): 1–8.Google ScholarPubMed
Hallberg, L., Bioavailability of dietary iron in man. Annu. Rev. Nutr., 1981. 1: 123–47.CrossRefGoogle ScholarPubMed
Bothwell, T. H., Overview and mechanisms of iron regulation. Nutr. Rev., 1995. 53(9): 237–45.CrossRefGoogle ScholarPubMed
Dallman, P. R., et al., Influence of age on laboratory criteria in the diagnosis of iron deficiency anemia and iron deficiency in infants and children. In Iron Nutrition in Health and Disease, 1996: LondonJohn Libby and Co., pp. 156–170.Google Scholar
Green, R., et al., Body iron excretion in man: a collaborative study. Am. J. Med., 1968. 45(3): 336–53.CrossRefGoogle ScholarPubMed
Hallberg, L., Iron balance in pregnancy. In Vitamins and Minerals in Pregnancy and Lactation, ed. Berger, H., 1988, New York, NY: Raven Press, pp. 115–27.Google Scholar
Milman, N., et al., Iron status and iron balance during pregnancy. A critical reappraisal of iron supplementation. Acta Obstet. Gynecol. Scand., 1999. 78(9): 749–57.CrossRefGoogle ScholarPubMed
Kelton, J. G. and M. Cruikshank, Hematologic disorders of pregnancy. In Medical Complications During Pregnancy, 3rd edn, ed. J. Burrow. 1988, Philadelphia, PA: W. B. Saunders, pp. 65–85.
Lowik, M. R., et al., Long-term effects of a vegetarian diet on the nutritional status of elderly people (Dutch Nutrition Surveillance System). J. Am. Coll. Nutr., 1990. 9(6): 600–9.CrossRefGoogle Scholar
Bates, C. J., Powers, H. J., and Thurnham, D. I., Vitamins, iron, and physical work. Lancet, 1989. 2(8658): 313–14.CrossRefGoogle ScholarPubMed
Prasad, A. S., et al., Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J. Lab. Clin. Med., 1963. 61(668): 537–49.Google ScholarPubMed
Arcasoy, A., et al., Ultrastructural changes in the mucosa of the small intestine in patients with geophagia (Prasad's syndrome). J. Pediatr. Gastroenterol. Nutr., 1990. 11(2): 279–82.CrossRefGoogle Scholar
Nishiyama, S., et al., Zinc and IGF-I concentrations in pregnant women with anemia before and after supplementation with iron and/or zinc. J. Am. Coll. Nutr., 1999. 18(3): 261–7.CrossRefGoogle ScholarPubMed
Rosenberg, E. H., Vitamin A and iron deficiency. Nutr. Rev. 1989. 47(4): 119–21.Google Scholar
Mandishona, E. M., et al., A traditional beverage prevents iron deficiency in African women of child bearing age. Eur. J. Clin. Nutr., 1999. 53(9): 722–5.CrossRefGoogle ScholarPubMed
Disler, P. B., et al., The effect of tea on iron absorption. Gut, 1975. 16(3): 193–200.CrossRefGoogle ScholarPubMed
Nordenberg, D., Yip, R., and Binkin, N. J., The effect of cigarette smoking on hemoglobin levels and anemia screening. Jama, 1990. 264(12): 1556–9.CrossRefGoogle ScholarPubMed
Fielding, J. E., Smoking: health effects and control (2). N. Engl. J. Med., 1985. 313(9): 555–61.CrossRefGoogle Scholar
Stoltzfus, R. J., et al., Epidemiology of iron deficiency anemia in Zanzibari schoolchildren: the importance of hookworms. Am. J. Clin. Nutr., 1997. 65(1): 153–9.CrossRefGoogle ScholarPubMed
Kappus, K. D., et al., Intestinal parasitism in the United States: update on a continuing problem. Am. J. Trop. Med. Hyg., 1994. 50(6): 705–13.CrossRefGoogle ScholarPubMed
Steuchler, D., Endemic Regions of Tropical Infections, 1988, Toronto: M. H. Huber.Google Scholar
Barrett, J. F. R., Whittaker, P. G., and Williams, J. G., Absorption of non-haem iron from food during normal pregnancy. Br. Med. J., 1994. 309: 79–82.CrossRefGoogle ScholarPubMed
Blot, I., Diallo, D., and Tchernia, G., Iron deficiency in pregnancy: effects on the newborn. Curr. Opin. Hematol., 1999. 6(2): 65–70.CrossRefGoogle ScholarPubMed
Elwood, P. C., Evaluation of the clinical importance of anemia. Am. J. Clin. Nutr., 1973. 26(9): 958–64.CrossRefGoogle ScholarPubMed
Gardner, G. W., et al., Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am. J. Clin. Nutr., 1977. 30(6): 910–17.CrossRefGoogle ScholarPubMed
Dallman, P. R., Iron deficiency: does it matter?J. Intern. Med., 1989. 226(5): 367–72.CrossRefGoogle ScholarPubMed
Ohira, Y., et al., Work capacity, heart rate and blood lactate responses to iron treatment. Br. J. Haematol., 1979. 41(3): 365–72.CrossRefGoogle ScholarPubMed
Rangan, A. M., Blight, G. D., and Binns, C. W., Iron status and non-specific symptoms of female students. J. Am. Coll. Nutr., 1998. 17(4): 351–5.CrossRefGoogle ScholarPubMed
Cook, J. D., Iron-deficiency anaemia. Baillieres Clin. Haematol., 1994. 7(4): 787–804.CrossRefGoogle ScholarPubMed
Fowler, N. O., High cardiac output states, 5th edn. In The Heart, ed. Hurst, J.. 1982, New York, NY: McGraw-Hill, pp. 477–90.Google Scholar
Steinkamp, I., Marathon running fails to influence RBC survival rates in iron-replete women. Phys. Sportsmed., 1986. 14: 89–92.CrossRefGoogle Scholar
Rowland, T. W., Iron deficiency in the young athlete. Pediatr. Clin. North Am., 1990. 37(5): 1153–63.CrossRefGoogle ScholarPubMed
Wishnitzer, R., Decreased cellularity and hemosiderin of the bone marrow in healthy and overtrained competitive distance runners. Harefuah, 1986. 14: 86–92.Google ScholarPubMed
Balaban, E. P., et al., The frequency of anemia and iron deficiency in the runner. Med. Sci. Sports Exerc., 1989. 21(6): 643–8.CrossRefGoogle ScholarPubMed
Wijn, J. F., et al., Haemoglobin, packed cell volume, serum iron and iron binding capacity of selected athletes during training. J. Sports Med. Phys. Fitness, 1971. 11(1): 42–51.Google ScholarPubMed
Clement, D. B. and Amundson, R. C., Nutritional intake and hematological parameters in endurance runners. Phys. Sportsmed., 1982. 10: 37–45.CrossRefGoogle ScholarPubMed
Risser, W. L., et al., Iron deficiency in female athletes: its prevalence and impact on performance. Med. Sci. Sports Exerc., 1988. 20(2): 116–21.CrossRefGoogle ScholarPubMed
Selby, G. B., When does an athlete need iron?Phys. Sportsmed., 1991. 19: 96–105.CrossRefGoogle Scholar
Risser, W. L., Iron deficiency in adolescents and young adults. Phys. Sportsmed., 1990. 18: 87–93.CrossRefGoogle ScholarPubMed
Scholl, T. O., et al., Anemia vs. iron deficiency: increased risk of preterm delivery in a prospective study. Am. J. Clin. Nutr., 1992. 55(5): 985–8.CrossRefGoogle ScholarPubMed
Preziosi, P., et al., Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. Am. J. Clin. Nutr., 1997. 66(5): 1178–82.CrossRefGoogle ScholarPubMed
Malhotra, M., et al., Maternal and perinatal outcome in varying degrees of anemia. Int. J. Gynaecol. Obstet., 2002. 79(2): 93–100.CrossRefGoogle ScholarPubMed
Hamalainen, H., Hakkarainen, K., and Heinonen, S., Anaemia in the first but not in the second or third trimester is a risk factor for low birth weight. Clin. Nutr., 2003. 22(3): 271–5.CrossRefGoogle ScholarPubMed
Lozoff, B., Jimenez, E., and Wolf, A. W., Long-term developmental outcome of infants with iron deficiency. N. Engl. J. Med., 1991. 325(10): 687–94.CrossRefGoogle ScholarPubMed
Pollitt, E., Iron deficiency and cognitive function. Annu. Rev. Nutr., 1993. 13: 521–37.CrossRefGoogle ScholarPubMed
Idjradinata, P. and Pollitt, E., Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet, 1993. 341(8836): 1–4.CrossRefGoogle ScholarPubMed
Kilbride, J., et al., Anaemia during pregnancy as a risk factor for iron-deficiency anaemia in infancy: a case-control study in Jordan. Int. J. Epidemiol., 1999. 28(3): 461–8.CrossRefGoogle ScholarPubMed
Kadyrov, M., et al., Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet, 1998. 352(9142): 1747–9.CrossRefGoogle ScholarPubMed
Cogswell, M. E., et al., Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am. J. Clin. Nutr., 2003. 78(4): 773–81.CrossRefGoogle ScholarPubMed
Crosby, W. H., Pica: a compulsion caused by iron deficiency. Br. J. Haematol., 1976. 34(2): 341–2.CrossRefGoogle ScholarPubMed
Farley, P. C. and Foland, J., Iron deficiency anemia. How to diagnose and correct. Postgrad. Med., 1990. 87(2): 89–93, 96, 101.CrossRefGoogle ScholarPubMed
Pennington, G. R., Nuts and iron deficiency. Med. J. Aust. 1990. 153: 571–2.Google Scholar
Crosby, W. H., Whatever became of chlorosis?Jama, 1987. 257(20): 2799–800.CrossRefGoogle ScholarPubMed
Dawson, A. A., et al., Evaluation of diagnostic significance of certain symptoms and physical signs in anaemic patients. Br. Med. J., 1969. 3(668): 436–9.CrossRefGoogle ScholarPubMed
Elwood, P. C., Anaemia. Lancet, 1974. 2(7893): 1364–5.CrossRefGoogle ScholarPubMed
Strobach, R. S., et al., The value of the physical examination in the diagnosis of anemia. Correlation of the physical findings and the hemoglobin concentration. Arch. Intern. Med., 1988. 148(4): 831–2.CrossRefGoogle Scholar
Osler, W., Primary or Essential Anemia. The Principles and Practice of Medicine, ed. Osler, W.. 1908, East Norwalk, CT: Appleton and Lange, pp. 721–35.Google Scholar
Kalra, L., Hamlyn, A. N., and Jones, B. J., Blue sclerae: a common sign of iron deficiency?Lancet, 1986. 2(8518): 1267–9.CrossRefGoogle ScholarPubMed
Barton, L. L. and Friedman, A. D., Blue sclerae and iron deficiency. Am. J. Dis. Child., 1990. 144(11): 1180–1.Google ScholarPubMed
Bini, E. J., Micale, P. L., and Weinshel, E. H., Gastrointestinal endoscopy in premenopausal women with iron deficiency anemia: determination of the best diagnostic approach. Am. J. Gastroenterol., 1999. 94(6): 1715.CrossRefGoogle ScholarPubMed
Milman, N., Clausen, J., and Byg, K. E., Iron status in 268 Danish women aged 18–30 years: influence of menstruation, contraceptive method, and iron supplementation. Ann. Hematol., 1998. 77(1–2): 13–9.CrossRefGoogle ScholarPubMed
Geisinger, K. R., et al., Endometrial adenocarcinoma. A multiparameter clinicopathologic analysis including the DNA profile and the sex steroid hormone receptors. Cancer, 1986. 58(7): 1518–25.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Mohr, D. N., et al., Asymptomatic microhematuria and urologic disease. A population-based study. Jama, 1986. 256(2): 224–9.CrossRefGoogle ScholarPubMed
Jones, R. S. and M. H. Sleisinger, Cancer of colon and rectum. In Gastrointestinal Disease, 2nd edn, ed. Sleisinger, M. H.. 1978, Philadelphia, PA: W. B. Saunders, pp. 1785–801.Google Scholar
McPhee, S. J., The evaluation of anemia. West J. Med., 1982. 137(3): 253–7.Google ScholarPubMed
Dallman, P. R., Yip, R., and Johnson, C., Prevalence and causes of anemia in the United States, 1976 to 1980. Am. J. Clin. Nutr., 1984. 39(3): 437–45.CrossRefGoogle ScholarPubMed
Freedman, M. L., Anemias in the elderly: physiologic or pathologic?Hosp. Pract (Hosp Ed)., 1982. 17(5): 121–9, 133–6.CrossRefGoogle ScholarPubMed
Htoo, S. H. and Koghoff, R. L., Erythrocyte parameters in the elderly: argument against new geriatric normal values. J. Am. Gerialr. Soc., 1979. 27: 547–52.CrossRefGoogle ScholarPubMed
Lipschitz, D. A., Mitchell, C. O., and Thompson, C., The anemia of senescence. Am. J. Hematol., 1981. 11(1): 47–54.CrossRefGoogle Scholar
Marx, J. J., Normal iron absorption and decreased red cell iron uptake in the aged. Blood, 1979. 53(2): 204–11.Google ScholarPubMed
CDC, CDC criteria for anemia in chldren and childbearing -aged women. MMWR Recomm. Rep., 1989. 38: 400–04.
Bothwell, T. H., Iron Deficiency in Women, R. W. Charlton, ed. 1981, Washington, D.C.: The Nutrition Foundation.
Svanberg, B., et al., Absorption of supplemental iron during pregnancy – a longitudinal study with repeated bone-marrow studies and absorption measurements. Acta Obstet. Gynecol. Scand. Suppl., 1975(48): 87–108.CrossRefGoogle ScholarPubMed
Sjostedt, J. E., et al., Oral iron prophylaxis during pregnancy: a comparative study on different dosage regimens. Acta. Obstet. Gynecol. Scand., 1977. 60(Suppl.): 3–9.CrossRefGoogle Scholar
Steer, P., et al., Relation between maternal haemoglobin concentration and birth weight in different ethnic groups. BMJ, 1995. 310(6978): 489–91.CrossRefGoogle ScholarPubMed
Lu, Z. M., et al., The relationship between maternal hematocrit and pregnancy outcome. Obstet. Gynecol., 1991. 77(2): 190–4.Google ScholarPubMed
Garn, S. M., et al., Maternal hematologic levels and pregnancy outcomes. Semin. Perinatol., 1981. 5(2): 155–62.Google ScholarPubMed
Murphy, J. F., et al., Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet, 1986. 1(8488): 992–5.CrossRefGoogle ScholarPubMed
Harris, G. J. and Simson, J. N., Causes of late diagnosis in cases of colorectal cancer seen in a district general hospital over a 2-year period. Ann. R. Coll. Surg. Engl., 1998. 80(4): 246–8.Google Scholar
Alper, B. S., Kimber, R., and Reddy, A. K., Using ferritin levels to determine iron-deficiency anemia in pregnancy. J. Fam. Pract., 2000. 49(9): 829–32.Google ScholarPubMed
Guyatt, G. H., et al., Laboratory diagnosis of iron-deficiency anemia: an overview. J. Gen. Intern. Med., 1992. 7: 145–53.CrossRefGoogle ScholarPubMed
Hallberg, L., et al., Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. Br. J. Haematol., 1993. 85(4): 787–98.CrossRefGoogle Scholar
Allen, L. H., Pregnancy and iron deficiency: unresolved issues. Nutr. Rev., 1997. 55(4): 91–101.CrossRefGoogle ScholarPubMed
Lipschitz, D. A., Cook, J. D., and Finch, C. A., A clinical evaluation of serum ferritin as an index of iron stores. N. Engl. J. Med., 1974. 290(22): 1213–16.CrossRefGoogle ScholarPubMed
Madan, N., et al., Monitoring oral iron therapy with protoporphyrin/heme ratios in pregnant women. Ann. Hematol., 1999. 78(6): 279–83.CrossRefGoogle ScholarPubMed
Suominen, P., et al., Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood, 1998. 92(8): 2934–9.Google ScholarPubMed
Breymann, C., Iron deficiency and anaemia in pregnancy: modern aspects of diagnosis and therapy. Blood Cells Mol. Dis., 2002. 29(3): 506–16.CrossRefGoogle ScholarPubMed
Food and Nutrition Board, Folate. Dietary reference intakes for thiamine, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline/a report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients, Food and Nutrition Board, Institute of Medicine, 1998, Washington, D.C: National Academy Press, pp. 196–305.
Rockey, D. C., Gastrointestinal evaluation for premenopausal women with iron deficiency anemia: what is appropriate?Am. J. Med., 1998. 105(4): 356–7.Google ScholarPubMed
Bini, E. J., Micale, P. L., and Weinshel, E. H., Evaluation of the gastrointestinal tract in premenopausal women with iron deficiency anemia. Am. J. Med., 1998. 105(4): 281–6.CrossRefGoogle ScholarPubMed
Eskeland, B., et al., Iron supplementation in pregnancy: is less enough? A randomized, placebo controlled trial of low dose iron supplementation with and without heme iron. Acta Obstet. Gynecol. Scand., 1997. 76(9): 822–8.CrossRefGoogle ScholarPubMed
Recommendations to prevent and control iron deficiency in the United States. Centers for Disease Control and Prevention. 1998. 47: 1–29.
Public Health Service: Caring for Our Future: The Content of Prenatal Care. A Report of the Public Health Expert Panel on the Content of Prenatal Care, 1989, Washington D.C.: U.S. Department of Agriculture and U.S. Department of Health and Human Services.
Makrides, M., et al., Efficacy and tolerability of low-dose iron supplements during pregnancy: a randomized controlled trial. Am. J. Clin. Nutr., 2003. 78(1): 145–53.CrossRefGoogle ScholarPubMed
Anderson, S. A., Guidelines for the Assessment and Management of Iron Deficiency in Women of Childbearing Age, 1991, Bethesda, MD: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition.Google Scholar
Beard, J. L., Effectiveness and strategies of iron supplementation during pregnancy. Am. J. Clin. Nutr., 2000. 71(5 Suppl): 1288–94S.CrossRefGoogle ScholarPubMed
Juarez-Vazquez, J., Bonizzoni, E., and Scotti, A., Iron plus folate is more effective than iron alone in the treatment of iron deficiency anaemia in pregnancy: a randomised, double blind clinical trial. Bjog, 2002. 109(9): 1009–14.CrossRefGoogle ScholarPubMed
Suprapto, B., Widardo, , and Suhanantyo, , Effect of low-dosage vitamin A and riboflavin on iron-folate supplementation in anaemic pregnant women. Asia Pac. J. Clin. Nutr., 2002. 11(4): 263–7.CrossRefGoogle ScholarPubMed
Bashiri, A., et al., Anemia during pregnancy and treatment with intravenous iron: review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol., 2003. 110(1): 2–7.CrossRefGoogle ScholarPubMed
Bayoumeu, F., et al., Iron therapy in iron deficiency anemia in pregnancy: intravenous route versus oral route. Am. J. Obstet. Gynecol., 2002. 186(3): 518–22.CrossRefGoogle ScholarPubMed
Breymann, C., et al., Efficacy and safety of intravenously administered iron sucrose with and without adjuvant recombinant human erythropoietin for the treatment of resistant iron-deficiency anemia during pregnancy. Am. J. Obstet. Gynecol., 2001. 184(4): 662–7.CrossRefGoogle ScholarPubMed
Perewusnyk, G., et al., Parenteral iron therapy in obstetrics: 8 years experience with iron-sucrose complex. Br. J. Nutr., 2002. 88(1): 3–10.CrossRefGoogle ScholarPubMed
Sifakis, S., et al., Erythropoietin in the treatment of iron deficiency anemia during pregnancy. Gynecol. Obstet. Invest., 2001. 51(3): 150–6.CrossRefGoogle ScholarPubMed
Hatzis, T., et al., The effects of recombinant human erythropoietin given immediately after delivery to women with anaemia. Curr. Med. Res. Opin., 2003. 19(4): 346–9.CrossRefGoogle ScholarPubMed
Hoffman, A. A., Hematology: Basic Principles and Practice, ed. Hoffman, R.. Philadelphia, PA: Elsevier Churchill Livingstone, 2000, pp. 446–85.Google Scholar
Lucock, M., Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol. Genet. Metab., 2000. 71(1–2): 121–38.CrossRefGoogle ScholarPubMed
Mudd, S. H., et al., The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am. J. Hum. Genet., 1985. 37(1): 1–31.Google ScholarPubMed
Kang, S. S., et al., Thermolabile methylenetetrahydrofolate reductase in patients with coronary artery disease. Metabolism, 1988. 37(7): 611–3.CrossRefGoogle ScholarPubMed
Brattstrom, L., et al., Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation, 1998. 98(23): 2520–6.CrossRefGoogle Scholar
Botto, L. D. and Yang, Q., 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HUGE review. Am. J. Epidemiol., 2000. 151(9): 862–77.CrossRefGoogle ScholarPubMed
Guinotte, C. L., et al., Methylenetetrahydrofolate reductase 677C→T variant modulates folate status response to controlled folate intakes in young women. J. Nutr., 2003. 133(5): 1272–80.CrossRefGoogle ScholarPubMed
Silaste, M. L., et al., Polymorphisms of key enzymes in homocysteine metabolism affect diet responsiveness of plasma homocysteine in healthy women. J. Nutr., 2001. 131(10): 2643–7.CrossRefGoogle ScholarPubMed
Pullin, C. H., et al., Optimization of dietary folate or low-dose folic acid supplements lower homocysteine but do not enhance endothelial function in healthy adults, irrespective of the methylenetetrahydrofolate reductase (C677T) genotype. J. Am. Coll. Cardiol., 2001. 38(7): 1799–805.CrossRefGoogle Scholar
Lee, R. and Frenkel, E. P., Hyperhomocysteinemia and thrombosis. Hematol. Oncol. Clin. North Am., 2003. 17(1): 85–102.CrossRefGoogle ScholarPubMed
Frenkel, E. P. and Yardley, D. A., Clinical and laboratory features and sequelae of deficiency of folic acid (folate) and vitamin B12 (cobalamin) in pregnancy and gynecology. Hematol. Oncol. Clin. North Am., 2000. 14(5): 1079–100, viii.CrossRefGoogle Scholar
Snow, C. F., Laboratory diagnosis of vitamin B12 and folate deficiency: a guide for the primary care physician. Arch. Intern. Med., 1999. 159(12): 1289–98.CrossRefGoogle ScholarPubMed
Pennypacker, L. C., et al., High prevalence of cobalamin deficiency in elderly outpatients. J. Am. Geriatr. Soc., 1992. 40(12): 1197–204.CrossRefGoogle ScholarPubMed
Klee, G. G., Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs. vitamin B(12) and folate. Clin. Chem., 2000. 46(8 Pt 2): 1277–83.Google ScholarPubMed
Lindenbaum, J., et al., Diagnosis of cobalamin deficiency: II. Relative sensitivities of serum cobalamin, methylmalonic acid, and total homocysteine concentrations. Am. J. Hematol., 1990. 34(2): 99–107.CrossRefGoogle ScholarPubMed
Lindenbaum, J., et al., Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N. Engl. J. Med., 1988. 318(26): 1720–8.CrossRefGoogle ScholarPubMed
Savage, D. G., et al., Sensitivity of serum methylmalonic acid and total homocysteine determinations for diagnosing cobalamin and folate deficiencies. Am. J. Med., 1994. 96(3): 239–46.CrossRefGoogle ScholarPubMed
Baker, H., et al., Vitamin profile of 563 gravidas during trimesters of pregnancy. J. Am. Coll. Nutr., 2002. 21(1): 33–7.CrossRefGoogle ScholarPubMed
Koebnick, C., et al., Longitudinal concentrations of vitamin B(12) and vitamin B(12)-binding proteins during uncomplicated pregnancy. Clin. Chem., 2002. 48(6 Pt 1): 928–33.Google ScholarPubMed
Chery, C., et al., Hyperhomocysteinemia is related to a decreased blood level of vitamin B12 in the second and third trimester of normal pregnancy. Clin. Chem. Lab. Med., 2002. 40(11): 1105–8.CrossRefGoogle ScholarPubMed
Cikot, R. J., et al., Longitudinal vitamin and homocysteine levels in normal pregnancy. Br. J. Nutr., 2001. 85(1): 49–58.CrossRefGoogle ScholarPubMed
Walker, M. C., et al., Changes in homocysteine levels during normal pregnancy. Am. J. Obstet. Gynecol., 1999. 180(3 Pt 1): 660–4.CrossRefGoogle ScholarPubMed
Murphy, M. M., et al., The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution, or a decrease in albumin in a longitudinal study. Am. J. Clin. Nutr., 2002. 76(3): 614–9.CrossRefGoogle Scholar
U.S. Department of Agriculture and U.S. Department of Health and Human Services: Nutrition and Your Health: Dietary Guidelines for Americans, 1995, Washington, D.C.: U.S. Department of Agriculture and U.S. Department of Health and Human Services.
Choumenkovitch, S. F., et al., Folic acid intake from fortification in United States exceeds predictions. J. Nutr., 2002. 132(9): 2792–8.CrossRefGoogle ScholarPubMed
Quinlivan, E. P. and Gregory, J. F., 3rd, Effect of food fortification on folic acid intake in the United States. Am. J. Clin. Nutr., 2003. 77(1): 221–5.CrossRefGoogle ScholarPubMed
Lawrence, J. M., et al., Trends in serum folate after food fortification. Lancet, 1999. 354(9182): 915–16.CrossRefGoogle ScholarPubMed
Jacques, P. F., et al., The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N. Engl. J. Med., 1999. 340(19): 1449–54.CrossRefGoogle ScholarPubMed
Caudill, M. A., et al., Folate status in women of childbearing age residing in Southern California after folic acid fortification. J. Am. Coll. Nutr., 2001. 20(2 Suppl): 129–34.CrossRefGoogle ScholarPubMed
Mathews, T. J., Honein, M. A., and Erickson, J. D., Spina bifida and anencephaly prevalence – United States 1991–2001. MMWR Recomm. Rep., 2002. 51(RR-13): 9–11.Google ScholarPubMed
Friso, S., et al., A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA, 2002. 99(8): 5606–11.CrossRefGoogle ScholarPubMed
Wald, N. J., et al., Quantifying the effect of folic acid. Lancet, 2001. 358(9298): 2069–73.CrossRefGoogle ScholarPubMed
Honein, M. A., et al., Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. Jama, 2001. 285(23): 2981–6.CrossRefGoogle ScholarPubMed
Ray, J. G. and Blom, H. J., Vitamin B12 insufficiency and the risk of fetal neural tube defects. Qjm, 2003. 96(4): 289–95.CrossRefGoogle ScholarPubMed
McMullin, M. F., et al., Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy. Clin. Lab. Haematol., 2001. 23(3): 161–5.CrossRefGoogle ScholarPubMed
Nelen, W. L., et al., Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil. Steril., 2000. 74(6): 1196–9.CrossRefGoogle ScholarPubMed
Quere, I., et al., Vitamin supplementation and pregnancy outcome in women with recurrent early pregnancy loss and hyperhomocysteinemia. Fertil. Steril., 2001. 75(4): 823–5.CrossRefGoogle ScholarPubMed
Zetterberg, H., et al., Increased frequency of combined methylenetetrahydrofolate reductase C677 T and A1298 C mutated alleles in spontaneously aborted embryos. Eur. J. Hum. Genet., 2002. 10(2): 113–18.CrossRefGoogle Scholar
Isotalo, P. A., Wells, G. A., and Donnelly, J. G., Neonatal and fetal methylenetetrahydrofolate reductase genetic polymorphisms: an examination of C677 T and A1298 C mutations. Am. J. Hum. Genet., 2000. 67(4): 986–90.CrossRefGoogle Scholar
Gabbe, S. B., Obstetrics – Normal and Problem Pregnancies, Gabbe, S., ed. 2002, Philadelphia, PA: Churchill Livingstone. pp. 947–74.Google Scholar
Roberts, J. M. and Cooper, D. W., Pathogenesis and genetics of pre-eclampsia. Lancet, 2001. 357(9249): 53–6.CrossRefGoogle ScholarPubMed
Stuhlinger, M. C., et al., Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation, 2001. 104(21): 2569–75.CrossRefGoogle ScholarPubMed
Schlaich, M. P., et al., Mildly elevated homocysteine concentrations impair endothelium dependent vasodilation in hypercholesterolemic patients. Atherosclerosis, 2000. 153(2): 383–9.CrossRefGoogle ScholarPubMed
Tawakol, A., et al., Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation, 1997. 95(5): 1119–21.CrossRefGoogle Scholar
Rajkovic, A., Catalano, P. M., and Malinow, M. R., Elevated homocyst(e)ine levels with preeclampsia. Obstet. Gynecol., 1997. 90(2): 168–71.CrossRefGoogle Scholar
Raijmakers, M. T., et al., Plasma thiol status in preeclampsia. Obstet. Gynecol., 2000. 95(2): 180–4.Google ScholarPubMed
Leeda, M., et al., Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction. Am. J. Obstet. Gynecol., 1998. 179(1): 135–9.CrossRefGoogle ScholarPubMed
Sorensen, T. K., et al., Elevated second-trimester serum homocyst(e)ine levels and subsequent risk of preeclampsia. Gynecol. Obstet. Invest., 1999. 48(2): 98–103.CrossRefGoogle Scholar
Lachmeijer, A. M., et al., Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. Am. J. Obstet. Gynecol., 2001. 184(3): 394–402.CrossRefGoogle ScholarPubMed
Cotter, A. M., et al., Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe preeclampsia. Am. J. Obstet. Gynecol., 2001. 185(4): 781–5.CrossRefGoogle ScholarPubMed
Cotter, A. M., et al., Elevated plasma homocysteine in early pregnancy: a risk factor for the development of nonsevere preeclampsia. Am. J. Obstet. Gynecol., 2003. 189(2): 391–4; discussion 394–6.CrossRefGoogle ScholarPubMed
Lopez-Quesada, E., Vilaseca, M. A., and Lailla, J. M., Plasma total homocysteine in uncomplicated pregnancy and in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 2003. 108(1): 45–9.CrossRefGoogle ScholarPubMed
Sanchez, S. E., et al., Plasma folate, vitamin B(12), and homocyst(e)ine concentrations in preeclamptic and normotensive Peruvian women. Am. J. Epidemiol., 2001. 153(5): 474–80.CrossRefGoogle Scholar
Powers, R. W., et al., The 677 C-T methylenetetrahydrofolate reductase mutation does not predict increased maternal homocysteine during pregnancy. Obstet. Gynecol., 2003. 101(4): 762–6.Google Scholar
Prasmusinto, D., et al., The methylenetetrahydrofolate reductase 677 C→T polymorphism and preeclampsia in two populations. Obstet. Gynecol., 2002. 99(6): 1085–92.Google Scholar
O'Shaughnessy, K. M., et al., Factor V Leiden and thermolabile methylenetetrahydrofolate reductase gene variants in an East Anglian preeclampsia cohort. Hypertension, 1999. 33(6): 1338–41.CrossRefGoogle Scholar
Kobashi, G., et al., Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and preeclampsia in Japanese women. Am. J. Med. Genet., 2000. 93(2): 122–5.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Murphy, R. P., et al., Prospective evaluation of the risk conferred by factor V Leiden and thermolabile methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler. Thromb. Vasc. Biol., 2000. 20(1): 266–70.CrossRefGoogle ScholarPubMed
Ray, J. G. and Mamdani, M. M., Association between folic acid food fortification and hypertension or preeclampsia in pregnancy. Arch. Intern. Med., 2002. 162(15): 1776–7.CrossRefGoogle ScholarPubMed
Vries, J. I., et al., Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. Br. J. Obstet. Gynaecol., 1997. 104(11): 1248–54.CrossRefGoogle ScholarPubMed
Hogg, B. B., et al., Second-trimester plasma homocysteine levels and pregnancy-induced hypertension, preeclampsia, and intrauterine growth restriction. Am. J. Obstet. Gynecol., 2000. 183(4): 805–9.CrossRefGoogle ScholarPubMed
Burke, G., et al., Intrauterine growth retardation, perinatal death, and maternal homocysteine levels. N. Engl. J. Med., 1992. 326(1): 69–70.Google ScholarPubMed
Infante-Rivard, C., et al., Unexpected relationship between plasma homocysteine and intrauterine growth restriction. Clin. Chem., 2003. 49(9): 1476–82.CrossRefGoogle ScholarPubMed
O'Leary, V. B., et al., MTRR and MTHFR polymorphism: link to Down syndrome?Am. J. Med. Genet., 2002. 107(2): 151–5.CrossRefGoogle ScholarPubMed
Wenstrom, K. D., et al., Association of the C677 T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malformations. Am. J. Obstet. Gynecol., 2001. 184(5): 806–12; discussion 812–17.CrossRefGoogle Scholar
Eskes, T. K., Clotting disorders and placental abruption: homocysteine – a new risk factor. Eur. J. Obstet. Gynecol. Reprod. Biol., 2001. 95(2): 206–12.CrossRefGoogle ScholarPubMed
Lamprecht, S. A. and Lipkin, M., Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat. Rev. Cancer, 2003. 3(8): 601–14.CrossRefGoogle ScholarPubMed
Zhang, S., et al., A prospective study of folate intake and the risk of breast cancer. Jama, 1999. 281(17): 1632–7.CrossRefGoogle ScholarPubMed
Rohan, T. E., et al., Dietary folate consumption and breast cancer risk. J. Natl. Cancer Inst., 2000. 92(3): 266–9.CrossRefGoogle ScholarPubMed
Feigelson, H. S., et al., Alcohol, folate, methionine, and risk of incident breast cancer in the American Cancer Society Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomarkers Prev., 2003. 12(2): 161–4.Google ScholarPubMed
Sellers, T. A., et al., Interaction of dietary folate intake, alcohol, and risk of hormone receptor-defined breast cancer in a prospective study of postmenopausal women. Cancer Epidemiol. Biomarkers Prev., 2002. 11(10 Pt 1): 1104–7.Google Scholar
Graham, S., et al., Nutritional epidemiology of postmenopausal breast cancer in western New York. Am. J. Epidemiol., 1991. 134(6): 552–66.CrossRefGoogle ScholarPubMed
Freudenheim, J. L., et al., Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. J. Natl. Cancer Inst., 1996. 88(6): 340–8.CrossRefGoogle ScholarPubMed
Potischman, N., et al., Intake of food groups and associated micronutrients in relation to risk of early-stage breast cancer. Int. J. Cancer, 1999. 82(3): 315–21.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Shrubsole, M. J., et al., Dietary folate intake and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Res., 2001. 61(19): 7136–41.Google ScholarPubMed
Sharp, L., et al., Folate and breast cancer: the role of polymorphisms in methylenetetrahydrofolate reductase (MTHFR). Cancer Lett., 2002. 181(1): 65–71.CrossRefGoogle Scholar
Semenza, J. C., et al., Breast cancer risk and methylenetetrahydrofolate reductase polymorphism. Breast Cancer Res. Treat., 2003. 77(3): 217–23.CrossRefGoogle ScholarPubMed
Langsenlehner, U., et al., The common 677C>T gene polymorphism of methylenetetrahydrofolate reductase gene is not associated with breast cancer risk. Breast Cancer Res. Treat., 2003. 81(2): 169–72.CrossRefGoogle Scholar
Zhang, S. M., et al., Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J. Natl. Cancer Inst., 2003. 95(5): 373–80.CrossRefGoogle ScholarPubMed
Giovannucci, E., et al., Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J. Natl. Cancer Inst., 1995. 87(4): 265–73.CrossRefGoogle ScholarPubMed
Giovannucci, E., et al., Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study. Ann. Intern. Med., 1998. 129(7): 517–24.CrossRefGoogle ScholarPubMed
Su, L. J. and Arab, L., Nutritional status of folate and colon cancer risk: evidence from NHANES I epidemiologic follow-up study. Ann. Epidemiol., 2001. 11(1): 65–72.CrossRefGoogle ScholarPubMed
Ma, J., et al., Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res., 1997. 57(6): 1098–102.Google ScholarPubMed
Slattery, M. L., et al., Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol. Biomarkers Prev., 1999. 8(6): 513–18.Google ScholarPubMed
Chen, J., et al., A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res., 1996. 56(21): 4862–4.Google ScholarPubMed
Eichholzer, M., et al., Folate and the risk of colorectal, breast and cervix cancer: the epidemiological evidence. Swiss Med. Wkly, 2001. 131(37–38): 539–49.Google ScholarPubMed
Shen, H., et al., Dietary folate intake and lung cancer risk in former smokers: a case-control analysis. Cancer Epidemiol. Biomarkers Prev., 2003. 12(10): 980–6.Google ScholarPubMed
Heijmans, B. T., et al., A common variant of the methylenetetrahydrofolate reductase gene (1p36) is associated with an increased risk of cancer. Cancer Res., 2003. 63(6): 1249–53.Google ScholarPubMed
Jatoi, A., et al., Folate status among patients with non-small cell lung cancer: a case-control study. J. Surg. Oncol., 2001. 77(4): 247–52.CrossRefGoogle ScholarPubMed
Bandera, E. V., et al., Diet and alcohol consumption and lung cancer risk in the New York State Cohort (United States). Cancer Causes Control, 1997. 8(6): 828–40.CrossRefGoogle Scholar
Erickson, J. D., Mulinare, J., Yang, Q. n., CDC. Folate status in women of childbearing age- United States. MMWR, 2000; 49, 962–5.Google Scholar
Malinow, M. R., et al., The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler. Thromb. Vasc. Biol., 1997. 17(6): 1157–62.CrossRefGoogle ScholarPubMed
Woodside, J. V., et al., Effect of B-group vitamins and antioxidant vitamins on hyperhomocysteinemia: a double-blind, randomized, factorial-design, controlled trial. Am. J. Clin. Nutr., 1998. 67(5): 858–66.CrossRefGoogle ScholarPubMed
Sifakis, S., et al., Erythropoietin in the treatment of iron deficiency anemia during pregnancy. Gynecol. Obstet. Invest., 2001; 51: 150–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×