Hostname: page-component-74d7c59bfc-d4pbl Total loading time: 0 Render date: 2026-01-27T13:43:07.543Z Has data issue: false hasContentIssue false

On the mechanism of dual tones in transitional flow around a heptagonal cylinder

Published online by Cambridge University Press:  05 January 2026

Xuqi Zhang
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen, Guangdong 518055, PR China
Lian Gan
Affiliation:
Department of Engineering, Durham University, DH1 3LE, Durham, UK
Yu Liu*
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology , Shenzhen, Guangdong 518055, PR China
*
Corresponding author: Yu Liu, liuy@sustech.edu.cn

Abstract

The dual-tone transition phenomenon and its formation mechanism in the flow around a heptagonal cylinder (side number $N= 7$) are experimentally investigated in depth over a range of free-stream velocities corresponding to Reynolds numbers of the order of $10^4$$10^5$. Dual tone in this context refers to the emergence of two dominant peaks in the far-field acoustic spectrum when a flow in transition regime passes over a polygonal cylinder in principal orientations. The dual-tone phenomenon is also observed in an $N = 9$ cylinder in the face orientation and an $N = 11$ in the corner orientation, which contrasts with all the other polygonal cylinders of $N\in {\mathbb{Z}}[3,12]$ systematically investigated in the present study, where only a single tonal peak dominates the spectrum, similar to the Aeolian tone observed in the circular cylinder in the subcritical regime. The emergence of the dual tone is found to be responsible for the reduction of far-field noise. Continuous wavelet transform analysis reveals that the occurrence of the two competing tones in the time domain can be empirically modelled by Gaussian distributions. Additional proper orthogonal decomposition based phase averaging using time-resolved planar particle image velocimetry enables coherent vortex structure identification for the two quasi-stable shedding modes, which are responsible for the formation of the two tones. Near-wall flow and pressure fluctuation analysis further confirms that the two tones originate from stochastic shear-layer separation–reattachment switching, thereby generating two patterns of dipole sound sources through distinct vortex formation pathways.

Information

Type
JFM Papers
Copyright
© The Author(s), 2026. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anand, K. & Sarkar, S. 2015 Experimental investigation of separated shear layer from a leading edge subjected to various angles of attack with tail flap deflections. Sadhana 40, 803817.10.1007/s12046-015-0341-2CrossRefGoogle Scholar
Bai, H. & Alam, M.M. 2018 Dependence of square cylinder wake on Reynolds number. Phys. Fluids 30 (1), 015102.10.1063/1.4996945CrossRefGoogle Scholar
Bai, H., Lu, Z., Wei, R., Yang, Y. & Liu, Y. 2021 Noise reduction of sinusoidal wavy cylinder in subcritical flow regime. Phys. Fluids 33 (10), 105120.10.1063/5.0065881CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 2011 Random Data: Analysis and Measurement Procedures. John Wiley & Sons.Google Scholar
Bosch, H.R. & Guterres, R.M. 2001 Wind tunnel experimental investigation on tapered cylinders for highway support structures. J. Wind Engng Ind. Aerodyn. 89 (14-15), 13111323.10.1016/S0167-6105(01)00144-1CrossRefGoogle Scholar
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.10.1017/S0022112083002189CrossRefGoogle Scholar
Casalino, D. & Jacob, M. 2003 Prediction of aerodynamic sound from circular rods via spanwise statistical modelling. J. Sound Vib. 262 (4), 815844.10.1016/S0022-460X(02)01136-7CrossRefGoogle Scholar
Catalano, P., Wang, M., Iaccarino, G. & Moin, P. 2003 Numerical simulation of the flow around a circular cylinder at high reynolds numbers. Intl J. Heat Fluid Flow 24 (4), 463469.10.1016/S0142-727X(03)00061-4CrossRefGoogle Scholar
Cheng, H., Masoudi, E., Liu, Y. & Gan, L. 2024 On the asymmetric vortex evolution in the near wake behind polygonal cylinders in an incident flow. Ocean Engng 307, 118142.10.1016/j.oceaneng.2024.118142CrossRefGoogle Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1), 113139.10.1146/annurev.fluid.39.050905.110149CrossRefGoogle Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231 (1187), 505514.10.1098/rspa.1955.0191CrossRefGoogle Scholar
Daubechies, I. 1992 Ten Lectures on Wavelets. SIAM.10.1137/1.9781611970104CrossRefGoogle Scholar
Dong, S. & Karniadakis, G.E. 2005 Dns of flow past a stationary and oscillating cylinder at re = 10000. J. Fluids Struct. 20 (4), 519531.10.1016/j.jfluidstructs.2005.02.004CrossRefGoogle Scholar
Duan, F. & Wang, J. 2021 Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate. J. Fluid Mech. 920, A6.10.1017/jfm.2021.403CrossRefGoogle Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24 (1), 395458.10.1146/annurev.fl.24.010192.002143CrossRefGoogle Scholar
Garcia-Sagrado, A. & Hynes, T. 2012 Wall pressure sources near an airfoil trailing edge under turbulent boundary layers. J. Fluids Struct. 30, 334.10.1016/j.jfluidstructs.2011.12.007CrossRefGoogle Scholar
Geyer, T.F. 2020 Experimental evaluation of cylinder vortex shedding noise reduction using porous material. Exp. Fluids 61, 121.10.1007/s00348-020-02972-0CrossRefGoogle Scholar
Gloerfelt, X., Pérot, F., Bailly, C. & Juvé, D. 2005 Flow-induced cylinder noise formulated as a diffraction problem for low mach numbers. J. Sound Vib. 287 (1-2), 129151.10.1016/j.jsv.2004.10.047CrossRefGoogle Scholar
Harrell, F.E. 2015 Regression Modeling Strategies, 2nd edn. Springer.10.1007/978-3-319-19425-7CrossRefGoogle Scholar
Henderson, R.D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65112.10.1017/S0022112097007465CrossRefGoogle Scholar
Henning, A., Kaepernick, K., Ehrenfried, K., Koop, L. & Dillmann, A. 2008 Investigation of aeroacoustic noise generation by simultaneous particle image velocimetry and microphone measurements. Exp. Fluids 45 (6), 10731085.10.1007/s00348-008-0528-yCrossRefGoogle Scholar
Inoue, O. & Hatakeyama, N. 2002 Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285314.10.1017/S0022112002002124CrossRefGoogle Scholar
Kourta, A., Boisson, H.C., Chassaing, P. & Minh, H.H. 1987 Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141161.10.1017/S0022112087002039CrossRefGoogle Scholar
Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence Radio Wave Propagation, pp. 166–178.Google Scholar
Lysenko, D.A., Ertesvåg, I.S. & Rian, K.E. 2014 Large-eddy simulation of the flow over a circular cylinder at reynolds number 2 $\times$ 104 . Flow Turbul. Combust. 92, 673698.10.1007/s10494-013-9509-1CrossRefGoogle Scholar
Mallat, S.G. 1989 A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 (7), 674693.10.1109/34.192463CrossRefGoogle Scholar
Maryami, R., Arcondoulis, E.J.G., Liu, Q. & Liu, Y. 2023 Experimental near-field analysis for flow induced noise of a structured porous-coated cylinder. J. Sound Vib. 551, 117611.10.1016/j.jsv.2023.117611CrossRefGoogle Scholar
Maryami, R., Arcondoulis, E.J.G. & Liu, Y. 2024 Flow and aerodynamic noise control of a circular cylinder by local blowing. J. Fluid Mech. 980, A56.10.1017/jfm.2024.39CrossRefGoogle Scholar
Maryami, R. & Liu, Y. 2024 Cylinder flow and noise control by active base blowing. J. Fluid Mech. 985, A10.10.1017/jfm.2024.261CrossRefGoogle Scholar
Masoudi, E., Gan, L. & Sims-Williams, D. 2021 Large eddy simulation of incident flows around polygonal cylinders. Phys. Fluids 33 (10), 105112.10.1063/5.0063046CrossRefGoogle Scholar
Masoudi, E., Sims-Williams, D. & Gan, L. 2023 Flow separation from polygonal cylinders in an incident flow. Phys. Rev. Fluids 8 (1), 014701.10.1103/PhysRevFluids.8.014701CrossRefGoogle Scholar
Moreau, D.J. & Doolan, C.J. 2013 Flow-induced sound of wall-mounted finite length cylinders. AIAA J. 51 (10), 24932502.10.2514/1.J052391CrossRefGoogle Scholar
Norberg, C. 1986 Interaction between freestream turbulence and vortex shedding for a single tube in cross-flow. J. Wind Eng. Ind. Aerodyn. 23, 501514.10.1016/0167-6105(86)90066-8CrossRefGoogle Scholar
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.10.1017/S0022112094003332CrossRefGoogle Scholar
Oguma, Y., Yamagata, T. & Fujisawa, N. 2013 Measurement of sound source distribution around a circular cylinder in a uniform flow by combined particle image velocimetry and microphone technique. J. Wind Engng Ind. Aerodyn. 118, 111.10.1016/j.jweia.2013.04.003CrossRefGoogle Scholar
Oudheusden, B.W.V., Scarano, F., Hinsberg, N.P.V. & Watt, D.W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 8698.10.1007/s00348-005-0985-5CrossRefGoogle Scholar
Phillips, O.M. 1956 The intensity of aeolian tones. J. Fluid Mech. 1 (6), 607624.10.1017/S0022112056000408CrossRefGoogle Scholar
Porteous, R., Moreau, D.J. & Doolan, C.J. 2017 The aeroacoustics of finite wall-mounted square cylinders. J. Fluid Mech. 832, 287328.10.1017/jfm.2017.682CrossRefGoogle Scholar
Roshko, A. 1969 On the persistence of transition in the near-wake. Problems Hydrodyn. Contin. Mech. 606–616.Google Scholar
Sieovich, L. 1987 Turbulence and the dynamics of coherent structures. part 1: coherent structures. Q. Appl. Math. 45, 561571.10.1090/qam/910462CrossRefGoogle Scholar
Skews, B.W. 1991 Autorotation of many-sided bodies in an airstream. Nature 352 (6335), 512513.10.1038/352512a0CrossRefGoogle Scholar
Skews, B.W. 1998 Autorotation of polygonal prisms with an upstream vane. J. Wind Engng Ind. Aerodyn. 73 (2), 145158.10.1016/S0167-6105(97)00280-8CrossRefGoogle Scholar
Tian, Z.W., Niu, H.T. & Wu, Z.N. 2011 Flow past polygons with an odd number of edges. Sci. China Phys. Mech. Astron. 54, 683689.10.1007/s11433-011-4267-3CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Chryssostomidis, C. 1986 On the formation of vortex streets behind stationary cylinders. J. Fluid Mech. 170, 461477.10.1017/S0022112086000976CrossRefGoogle Scholar
Wang, Q., Gan, L., Xu, S. & Zhou, Y. 2020 Vortex evolution in the near wake behind polygonal cylinders. Exp. Therm. Fluid Sci. 110, 109940.10.1016/j.expthermflusci.2019.109940CrossRefGoogle Scholar
Wang, Q.-Y., Xu, S.-J., Gan, L., Zhang, W.-G. & Zhou, Y. 2019 Scaling of the time-mean characteristics in the polygonal cylinder near-wake. Exp. Fluids 60, 115.10.1007/s00348-019-2835-xCrossRefGoogle Scholar
Welch, P. 1967 The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.10.1109/TAU.1967.1161901CrossRefGoogle Scholar
West, G.S. & Apelt, C.J. 1982 The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105. J. Fluid Mech. 114, 361377.10.1017/S0022112082000202CrossRefGoogle Scholar
Xu, S.J., Zhang, W.G., Gan, L., Li, M.G. & Zhou, Y. 2017 Experimental study of flow around polygonal cylinders. J. Fluid Mech. 812, 251278.10.1017/jfm.2016.801CrossRefGoogle Scholar
Yang, Y., Liu, Y., Liu, R., Shen, C., Zhang, P., Wei, R., Liu, X. & Xu, P. 2021 Design, validation, and benchmark tests of the aeroacoustic wind tunnel in SUSTech. Appl. Acoust. 175, 107847.10.1016/j.apacoust.2020.107847CrossRefGoogle Scholar
Zamponi, R., Avallone, F., Ragni, D., Schram, C. & Van Der Zwaag, S. 2024 Relevance of quadrupolar sound diffraction on flow-induced noise from porous-coated cylinders. J. Sound Vib. 583, 118430.10.1016/j.jsv.2024.118430CrossRefGoogle Scholar
Zdravkovich, M.M. 1997 Flow Around Circular Cylinders – Volume 1: Fundamentals. Oxford University Press.10.1093/oso/9780198563969.001.0001CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XCrossRefGoogle Scholar
Zhou, Y. & Antonia, R.A. 1993 A study of turbulent vortices in the near wake of a cylinder. J. Fluid Mech. 253, 643661.10.1017/S0022112093001934CrossRefGoogle Scholar