Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T11:19:36.823Z Has data issue: false hasContentIssue false

Characterization of carbon aerogels by transport measurements

Published online by Cambridge University Press:  31 January 2011

A.W.P. Fung
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Z.H. Wang
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
K. Lu
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
R.W. Pekala
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550
Get access

Abstract

Carbon aerogels are a special class of low-density microcellular foams. These materials are composed of interconnected carbon particles with diameters of approximately 10 nm. The temperature dependence of the dc electrical resistivity and magnetic susceptibility (χ) from 4 K to room temperature, magnetoresistance (MR) in a magnetic field up to 15 T, and Raman scattering were measured as a function of aerogel density. While Raman scattering measurements are not sensitive to variations in density, the χ data show that there are more free carriers in samples of higher density. Aerogel samples with different densities all show a negative temperature coefficient of resistivity and a positive MR. The less dense samples exhibit a stronger temperature dependence of resistivity and a stronger field dependence of the MR, indicating that with decreasing density and increasing porosity, charge carriers are more localized. Data analysis precludes variable-range hopping in favor of nearest-neighbor hopping and fluctuation-induced tunneling as the most likely conduction mechanisms for carbon aerogels.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Andres, R. P., Averback, R. S., Brown, W.L., Brus, L.E., Goddard, W.A. III, Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
2Goldstein, A. N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).CrossRefGoogle Scholar
3Hrubesh, L. W., Tillotson, T. M., and Poco, J. F., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 315.Google Scholar
4Buttner, D., Caps, R., Heinemann, U., Hummer, E., Kadur, A., Scheuerpflug, P., and Fricke, J., in Aerogels, edited by J. Fricke (Springer-Verlag, New York, 1986), p. 104.Google Scholar
5Lu, X., Arduini-Schuster, M. C., Kuhn, J., Nilsson, O., Fricke, J., and Pekala, R.W., Science 255, 971 (1992).CrossRefGoogle Scholar
6Gross, J., Fricke, J., and Hrubesh, L. W., J. Acoust. Soc. Am. 91, Part 1, 2004 (1992).Google Scholar
7Pekala, R.W., Alviso, C.T., and LeMay, J.D., J. Non-Cryst. Solids 125, 67 (1990).CrossRefGoogle Scholar
8Woignier, T., Phalippou, J., and Vacher, R., J. Mater. Res. 4, 688 (1989).CrossRefGoogle Scholar
9Gibson, L. J. and Ashby, M. F., Cellular Solids-Structure & Properties (Pergamon Press, New York, 1988).Google ScholarPubMed
10Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press Inc., New York, 1990).Google Scholar
11Teichner, S. J., Nicolaon, G. A., Vicarini, M. A., and Gardes, G. E. E., Adv. Coll. Interf. Sci. 5, 245 (1976).CrossRefGoogle Scholar
12Pekala, R.W. and Kong, F.M., Polym. Prpts. 30, 221 (1989).Google Scholar
13Pekala, R. W. and Kong, F. M., J. Phys. (Paris) Coll. Suppl. 50, C433 (1989).Google Scholar
14Pekala, R. W. and Alviso, C. T., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992).Google Scholar
15Benton, S.T. and Schmitt, C.R., Carbon 10, 185 (1972).CrossRefGoogle Scholar
16Pekala, R.W. and Hopper, R.W., J. Mater. Sci. 22, 1840 (1987).CrossRefGoogle Scholar
17Sylwester, A. P., Aubert, J. H., Rand, P. B., Arnold, C. Jr., and Clough, R. L., ACS Polymeric Mater. Sci. Eng. 57, 113 (1987).Google Scholar
18Geer, H. C., in Encyclopedia of Polymer Science and Technology, edited by Mark, H.F., Gaylord, N. G., and Bikales, N. M. (Interscience, New York, 1970), p. 102.Google Scholar
19Hayes, J. S. Jr., in Kirk-Othmer: Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., New York, 1981), Vol. 16, p. 135.Google Scholar
20Pekala, R. W., J. Mater. Sci. 24, 3221 (1989).CrossRefGoogle Scholar
21Barrett, E.P., Joyner, L.G., and Helenda, P.P., J. Am. Chem. Soc. 73, 373 (1951).CrossRefGoogle Scholar
22Horvath, G. and Kawazoe, K., J. Chem. Eng. (Japan) 18, 470 (1983).Google Scholar
23Hulsey, S. S., Alviso, C. T., Kong, F. M., and Pekala, R. W., in Novel Forms of Carbon, edited by Renschler, C. L., Pouch, J. J., and Cox, D. M. (Mater. Res. Soc. Symp. Proc. 270, Pittsburgh, PA, 1992).Google Scholar
24Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
25Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
26Mrozowski, S., Carbon 3, 305 (1965).Google Scholar
27Delhaes, P. and Carmona, F., Carbon 10, 677 (1972).Google Scholar
28Clark, W. G. and Tippie, L. C., Phys. Rev. B 20, 2914 (1979).Google Scholar
29Adamson, A. F. and Blayden, H. E., in the 1st Conference on Industrial Carbon and Graphite, organized by the Society of Chemical Industry (1958).Google Scholar
30Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
31Lu, X., Nilsson, O., Fricke, J., and Pekala, R.W., J. Appl. Phys. 73, 581 (1993).Google Scholar
32Staveren, M. P. J. van, Brom, H. B., and Jongh, L. J. De, Phys. Reports (Review Section of Phys. Lett.) 208, 1 (1991) .Google Scholar
33Pahl, R., Bonse, U., Pekala, R. W., and Kinney, J. H., J. Appl. Cryst. 24, 771 (1991).CrossRefGoogle Scholar
34Schaefer, D.W., Sandia National Laboratory (private communication).Google Scholar
35Shklovskii, B.I. and Efros, A. L., Electronic Properties of Doped Semiconductors (Springer, Berlin, Heidelberg, 1984).CrossRefGoogle Scholar
36Delhaes, P. and Carmona, F., in Chemistry and Physics of Carbon, edited by Walker, P. C. and Thrower, P. A. (Marcel Dekker, New York, 1981), Vol. 17, p. 89.Google Scholar
37Bottger, H. and Bryksin, V. V., Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985).CrossRefGoogle Scholar
38Austin, I. G. and Garbett, E. S., in Electronic and Structural Properties of Amorphous Semiconductors, edited by Comber, P. G. Le and Mort, J. (Academic Press, New York, 1973), p. 393.Google Scholar