Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T16:56:55.577Z Has data issue: false hasContentIssue false

Role of organic solvents and surface-active agents in the sol-emulsion-gel synthesis of spherical alumina powders

Published online by Cambridge University Press:  31 January 2011

M. Chatterjee
Affiliation:
Sol-Gel Division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
M. K. Naskar
Affiliation:
Sol-Gel Division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
B. Siladitya
Affiliation:
Sol-Gel Division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
D. Ganguli
Affiliation:
Sol-Gel Division, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
Get access

Extract

Spherical alumina particles were prepared following the sol-emulsion-gel method by systematic variation of (i) the concentration of the surfactant Span 80 above or below the critical micelle concentration (CMC) in different organic solvents and (ii) hydrophilic–lipophilic balance (HLB) of different surfactants in cyclohexane. The experimentally determined CMC of Span 80 was found to increase with increasing dielectric constant of the organic solvent, influencing the sol droplet and alumina particle size. With an increase in the HLB value of the surfactants, the tendency of monodispersed sphere formation among the particles increased with a decrease in the size distribution and average particle size (d50).

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chatterjee, M., Siladitya, B., and Ganguli, D., Mater. Lett. 25, 261 (1995).CrossRefGoogle Scholar
2.Woodhead, J.L., J. Mater. Educ. 6, 887 (1984).Google Scholar
3.Siladitya, B., Chatterjee, M., and Ganguli, D., J. Sol-Gel Sci. Technol. 15, 271 (1999).CrossRefGoogle Scholar
4.Lu, C-H. and Yeh, C-H., Mater. Lett. 33, 129 (1997).CrossRefGoogle Scholar
5.Chatterjee, M., Naskar, M.K., and Ganguli, D., J. Sol-Gel Sci. Technol. 16, 143 (1999).CrossRefGoogle Scholar
6.Chatterjee, M., Ray, J., Chatterjee, A., Joshi, S.V., Srivastava, M.P., and Ganguli, D., J. Mater. Sci. 28, 2803 (1993).CrossRefGoogle Scholar
7.Masui, T., Fujiwara, K., Machida, K., Adachi, G., Sakata, T., and Mori, H., Chem. Mater. 9, 2197 (1997).CrossRefGoogle Scholar
8.Moran, P.D., Bartlett, J.R., Woolfrey, J.L., Bowmaker, G.A., and Cooney, R.P., Ceram. Trans. 51, 27 (1995).Google Scholar
9.Byoun, Y-S., Oh, C-S., and Choi, S-C., Ceram. Trans. 51, 21 (1995).Google Scholar
10.Gao, L., Qiao, H.C., Qiu, H.B., and Yan, D.S., J. Eur. Ceram. Soc. 16, 437 (1996).CrossRefGoogle Scholar
11.Ganguli, D. and Chatterjee, M., Ceramic Powder Preparation: A Handbook (Kluwer Academic Publisher, Boston, 1997).CrossRefGoogle Scholar
12.Dickinson, E., in Controlled Particle, Droplet and Bubble Formation, edited by Wedlock, D.J. (Butterworth-Heinemann, Oxford, 1994), p. 191.CrossRefGoogle Scholar
13.Ray, J., Chatterjee, M., and Ganguli, D., J. Mater. Sci. Lett. 12, 1755 (1993).CrossRefGoogle Scholar
14.Chatterjee, M., Enkhtuvshin, D., Siladitya, B., and Ganguli, D., J. Mater. Sci. 33, 4937 (1998).CrossRefGoogle Scholar
15.Bourrel, M. and Schechter, R.S., Microemulsions and Related Systems (Marcel Dekker, New York, 1998).Google Scholar
16.Gutmann, H. and Kertes, A.S., J. Colloid Interface Sci. 51, 406 (1975).CrossRefGoogle Scholar
17.Ruckenstein, E. and Nagarajan, R., J. Phys. Chem. 84, 1349 (1980).CrossRefGoogle Scholar
18.Muto, S. and Meguro, K., Bull. Chem. Soc. Japan 46, 1316 (1973).CrossRefGoogle Scholar
19.Mukherjee, K., Moulik, S.P., and Mukherjee, D.C., Langmuir 9, 1727 (1993).CrossRefGoogle Scholar
20.Handbook of Chemistry and Physics, 75th ed., edited by Lide, D.R. (CRC Press, London, 1994), pp. 6155.Google Scholar
21.Adamson, A.W., Physical Chemistry of Surfaces (Interscience, New York, 1967), p. 21.Google Scholar
22.Karmakar, B., De, G., Kundu, D., and Ganguli, D., J. Non-Cryst. Solids 135, 29 (1991).CrossRefGoogle Scholar
23.Akinc, M. and Celikkaya, A., in Ceramic Powder Science, Advances in Ceramics, Vol. 21, edited by Messing, G.L., Mazdiyasni, K.S., McCauley, J.W., and Haber, R.A. (American Ceramic Society, Westerville, OH, 1987), p. 57.Google Scholar
24.Chatterjee, M., Ray, J., and Ganguli, D., Br. Ceram. Trans. J. 91, 159 (1992).Google Scholar
25.Mizuta, S., Parish, M., and Bowen, H.K., Ceram. Int. 10, 43 (1984).CrossRefGoogle Scholar
26.Yoshida, M., Lal, M., Deepak Kumar, N., and Prasad, P.N., J. Mater. Sci. 32, 4047 (1997).CrossRefGoogle Scholar
27.Auvray, L., Ayral, A., Cot, L., Dabadic, T., Guizard, C., and Ramsay, J., J. Sol-Gel Sci. Technol. 2, 205 (1994).CrossRefGoogle Scholar
28.Catalogue of Fluka Chemie (Fluka Chemie, Buchs, Switzerland, 1995), pp. 13851386, 1568.Google Scholar
29.Chan, A. and Lynn, J.L. Jr., in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 22, 3rd ed. (John Wiley, New York, 1983), p. 332.Google Scholar
30.Black, W., in Dispersion of Powders in Liquids, edited by Parfitt, G.D. (Elsevier, Amsterdam, 1969), p. 201.Google Scholar
31.Finar, I.L., Organic Chemistry, Vol. 1 (English Language Book Society and Longman Group, London, 1973), p. 244.Google Scholar
32.Catalogue, Handbook of Fine Chemicals (Aldrich, 1998–1999), p. 1521, 1715.Google Scholar
33.Schick, M.J., Nonionic Surfactants (Marcel Dekker, New York, 1966), p. 270.Google Scholar
34.Young, C.B.F and Coons, K.W., Surface Active Agents (Chemical Publishing, New York, 1945), p. 89.Google Scholar