Published online by Cambridge University Press: 11 April 2011
Basic Objects: Differential Forms and Manifolds
Basic Goal: Stokes' Theorem
In the last chapter we saw various theorems, all of which related the values of a function on the boundary of a geometric object with the values of the function's derivative on the interior. The goal of this chapter is to show that there is a single theorem (Stokes' Theorem) underlying all of these results. Unfortunately, a lot of machinery is needed before we can even state this grand underlying theorem. Since we are talking about integrals and derivatives, we have to develop the techniques that will allow us to integrate on k-dimensional spaces. This will lead to differential forms, which are the objects on manifolds that can be integrated. The exterior derivative is the technique for differentiating these forms. Since integration is involved, we will have to talk about calculating volumes. This is done in section one. Section two defines differential forms. Section three links differential forms with the vector fields, gradients, curls and divergences from last chapter. Section four gives the definition of a manifold (actually, three different methods for defining manifolds are given). Section five concentrates on what it means for a manifold to be orient able. In section six, we define how to integrate a differential form along a manifold, allowing us finally in section seven to state and to sketch a proof of Stokes' Theorem.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.