Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T23:55:06.261Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

8 - Interlude: Taking stock

Peter Smith
Affiliation:
University of Cambridge
Get access

Summary

Comparing incompleteness arguments

Our informal incompletability results, Theorems 6.3 and 7.2, aren't the same as Gödel's own theorems. But they are close cousins, and they seem quite terrific results to arrive at so very quickly.

Or are they? Everything depends, for a start, on whether the ideas of a ‘sufficiently expressive’ arithmetic language and a ‘sufficiently strong’ theory of arithmetic are in good order. Still, as we've already briefly indicated in Section 3.1, there are a number of standard, well-understood, ways of formally refining the intuitive notions of effective computability and effective decidability, ways that turn out to specify the same entirely definite and well-defined class of numerical functions and properties. Hence the ideas of a ‘sufficiently expressive’ language (which expresses all computable one-place functions) and a ‘sufficiently strong’ theory (which captures all decidable properties of numbers) can in fact also be made perfectly determinate.

But, by itself, that claim doesn't take us very far. For it leaves wide open the possibility that a language expressing all computable functions or a theory that captures all decidable properties has to be very rich indeed. However, we announced right back in Section 1.2 that Gödel's own arguments rule out complete theories even of the truths of basic arithmetic. Hence, if our easy Theorems are to have the full reach of Gödel's work, we'll really have to show (for starters) that the language of basic arithmetic is already sufficiently expressive, and that a theory built in that language can be sufficiently strong.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Interlude: Taking stock
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139149105.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Interlude: Taking stock
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139149105.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Interlude: Taking stock
  • Peter Smith, University of Cambridge
  • Book: An Introduction to Gödel's Theorems
  • Online publication: 05 March 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139149105.009
Available formats
×