Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T08:35:10.049Z Has data issue: false hasContentIssue false

Part III - Ant-Plant Protection Systems under Variable Habitat Conditions

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 157 - 246
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agrawal, A. A. and Spiller, D. A. (2004). Polymorphic buttonwood: effects of disturbance on resistance to herbivores in green and silver morphs of a Bahamian shrub. American Journal of Botany, 91, 19901997.CrossRefGoogle ScholarPubMed
Ballaré, C. L., Mazza, C. A., Austin, A. T. and Pierik, R. (2012). Canopy light and plant health. Plant Physiology, 160, 145155.Google Scholar
Ballhorn, D. J., Godschalx, A. L., Smart, S. M., Kautz, S. and Schädler, M. (2014). Chemical defense lowers plant competitiveness. Oecologia, 176, 811824.Google Scholar
Barton, A. M. (1986). Spatial variation in the effect of ants on extrafloral nectary plant. Ecology, 67, 495504.Google Scholar
Beattie, A. J. (1985). The Evolutionary Ecology of Ant-Plant Mutualisms. New York: Cambridge University Press.Google Scholar
Belkhadi, A., Hediji, H., Abbes, Z. et al. (2010). Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety, 73, 10041011.Google Scholar
Bentley, B. L. (1977). Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 8, 407427.CrossRefGoogle Scholar
Bixenmann, R. J., Coley, P. D. and Kursar, T. A. (2011). Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant-plant mutualism? Oecologia, 165, 417425.Google Scholar
Bryant, J. P., Chapin III, F. S. and Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357368.CrossRefGoogle Scholar
Bryant, J. P., Chapin III, F. S., Reichardt, P. B. and Clausen, T. P. (1987). Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia, 72, 510514.Google Scholar
Chamberlain, S. A. and Holland, J. N. (2009). Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology, 90, 23842392.Google Scholar
Chen, X., Adams, B., Bergeron, C., Sabo, A. and Hooper-Bùi, L. (2014). Ant community structure and response to disturbances on coastal dunes of Gulf of Mexico. Journal of Insect Conservation, 19, 113.CrossRefGoogle Scholar
Choh, Y., Kugimiya, S. and Takabayashi, J. (2006). Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia, 147, 455460.Google Scholar
Cogni, R., Freitas, A. V. and Oliveira, P. S. (2003). Interhabitat differences in ant activity on plant foliage: ants at extrafloral nectaries of Hibiscus pernambucensis in sandy and mangrove forests. Entomologia Experimentalis et Applicata, 107, 125131.Google Scholar
Coley, P. D., Bryant, J. P. and Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, 230, 895899.Google Scholar
Dalling, J. W. and Hubbell, S. P. (2002). Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology, 90, 557568.Google Scholar
Davidson, D. W. and Fisher, B. L. (1991). Symbiosis of ants with Cecropia as a function of light regime. In Ant-Plant Interactions, Huxley, C. R. and Cutler, D. F. (eds.). Oxford: Oxford University Press, pp. 289309.Google Scholar
Davidson, D. W. and McKey, D. (1993). Ant-plant symbioses: stalking the chuyachaqui. Trends in Ecology and Evolution, 8, 326332.Google Scholar
de la Fuente, M. A. S. and Marquis, R. J. (1999). The role of ant-tended extrafloral nectaries in the protection and benefit of a Neotropical rainforest tree. Oecologia, 118, 192202.Google Scholar
De Sibio, P. R. and Rossi, M. N. (2016). Interaction effect between herbivory and plant fertilization on extrafloral nectar production and on seed traits: An experimental study with Ricinus communis (Euphorbiaceae). Journal of Economic Entomology, 109, 16121618.Google Scholar
Dyer, L. A., Dodson, C. D., Beihoffer, J. and Letourneau, D. K. (2001). Trade-offs in antiherbivore defenses in Piper cenocladum: ant mutualists versus plant secondary metabolites. Journal of Chemical Ecology, 27, 581592.CrossRefGoogle ScholarPubMed
Eck, G., Fiala, B., Linsenmair, K. E., Hashim, R. B. and Proksch, P. (2001). Trade-off between chemical and biotic antiherbivore defense in the South East Asian plant genus Macaranga. Journal of Chemical Ecology, 27, 19791996.Google Scholar
Ellsworth, D. S. and Reich, P. B. (1992). Water relations and gas exchange of Acer saccharum seedlings in contrasting natural light and water regimes. Tree Physiology, 10, 120.Google Scholar
Falcão, J. C. F., Dáttilo, W. and Izzo, T. J. (2014). Temporal variation in extrafloral nectar secretion in different ontogenic stages of the fruits of Alibertia verrucosa S. Moore (Rubiaceae) in a Neotropical savanna. Journal of Plant Interactions, 9, 137142.Google Scholar
Fischer, R. C., Richter, A., Wanek, W. and Mayer, V. (2002). Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia, 133, 186192.Google Scholar
Folgarait, P. J. and Davidson, D. W. (1994). Antiherbivore defenses of myrmecophytic Cecropia under different light regimes. Oikos, 71, 305320.Google Scholar
Folgarait, P. J. and Davidson, D. W. (1995). Myrmecophytic Cecropia: antiherbivore defenses under different nutrient treatments. Oecologia, 104, 189206.Google Scholar
Fournier, A. R., Gosselin, A., Proctor, J. T. et al. (2004). Relationship between understory light and growth of forest-grown American ginseng (Panax quinquefolius L.). Journal of the American Society for Horticultural Science, 129, 425432.CrossRefGoogle Scholar
Frederickson, M. E., Ravenscraft, A., Arcila Hernández, L. M. et al. (2013). What happens when ants fail at plant defence? Cordia nodosa dynamically adjusts its investment in both direct and indirect resistance traits in response to herbivore damage. Journal of Ecology, 101, 400409.Google Scholar
Frederickson, M. E., Ravenscraft, A., Miller, G. A. et al. (2012). The direct and ecological costs of an ant-plant symbiosis. The American Naturalist, 179, 768778.Google Scholar
García, L. V., Maltez-Mouro, S., Pérez-Ramos, I. M., Freitas, H. and Marañón, T. (2006). Counteracting gradients of light and soil nutrients in the understorey of Mediterranean oak forests. Web Ecology, 6, 6774.Google Scholar
Heil, M. (2010). Plastic defense expression in plants. Evolutionary Ecology 24, 555569.Google Scholar
Heil, M. (2013). Let the best one stay: screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. Journal of Ecology, 101, 684688.CrossRefGoogle Scholar
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology, 60, 213232.Google Scholar
Heil, M., Baumann, B., Krüger, R., and Linsenmair, K. E. (2004). Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology, 14, 4552.Google Scholar
Heil, M., Delsinne, T., Hilpert, A. et al. (2002). Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos, 99, 457468.Google Scholar
Heil, M., Fiala, B., Baumann, B. and Linsenmair, K. E. (2000). Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology, 14, 749757.Google Scholar
Heil, M., Fiala, B., Kaiser, W. and Linsenmair, K. E. (1998). Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Functional Ecology, 12, 117122.Google Scholar
Heil, M., Fiala, B., Linsenmair, K. E., Zotz, G. and Menke, P. (1997). Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via symbiotic ant partners. Journal of Ecology, 85, 847861.Google Scholar
Heil, M., Gonzàlez-Teuber, M., Clement, L. W. et al. (2009). Divergent investment strategies of Acacia myrmecophytes and the Academy coexistence of mutualists and exploiters. Proceedings of the National of Sciences, 106, 1809118096.CrossRefGoogle Scholar
Heil, M., Hilpert, A., Fiala, B. et al. (2002). Nutrient allocation of Macaranga triloba ant plants to growth, photosynthesis and indirect defence. Functional Ecology, 16, 475483.Google Scholar
Heil, M., Hilpert, A., Krüger, R. and Linsenmair, K. E. (2004). Competition among visitors to extrafloral nectaries as a source of ecological costs of an indirect defence. Journal of Tropical Ecology, 20, 201208.Google Scholar
Heil, M., Koch, T., Hilpert, A. et al. (2001). Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences, 98, 10831088.Google Scholar
Hemming, J. D. and Lindroth, R. L. (1999). Effects of light and nutrient availability on aspen: growth, phytochemistry, and insect performance. Journal of Chemical Ecology, 25, 16871714.Google Scholar
Herms, D. A. and Mattson, W. J. (1992). The dilemma of plants: to grow or defend. Quarterly Review of Biology, 67, 283335.CrossRefGoogle Scholar
Holland, J. N., Chamberlain, S. A. and Horn, K. C. (2010). Temporal variation in extrafloral nectar secretion by reproductive tissues of the senita cactus, Pachycereus schottii (Cactaceae), in the Sonoran Desert of Mexico. Journal of Arid Environments, 74, 712714.Google Scholar
Howe, H. F. and Westley, L. C. (1988). Ecological Relationships of Plants and Animals. New York: Oxford University Press.Google Scholar
Huang, W., Siemann, E., Wheeler, G. S. et al. (2010). Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant. Journal of Ecology, 98, 11571167.Google Scholar
Izaguirre, M. M., Mazza, C. A., Astigueta, M. S., Ciarla, A. M. and Ballaré, C. L. (2013). No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia, 173, 213221.Google Scholar
Izzo, T. J. and Vasconcelos, H. L. (2002). Cheating the cheater: domatia loss minimizes the effects of ant castration in an Amazonian ant-plant. Oecologia, 133, 200205.Google Scholar
Itioka, T. (2005). Diversity of anti-herbivore defenses in Macaranga. In Pollination Ecology and the Rain Forest: Sarawak Studies, D. W. Roubik, S. Sakai and A. A. H. Karim (eds.). Ecological Studies, 174. New York: Springer, pp. 158–171.Google Scholar
Jones, I. M. and Koptur, S. (2015a). Dynamic extrafloral nectar production: The timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae). American Journal of Botany 102, 5866.Google Scholar
Jones, I. M. and Koptur, S. (2015b). Quantity over quality: light intensity, but not red/far-red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii. Ecology and Evolution, 5, 41084114.Google Scholar
Katayama, N. and Suzuki, N. (2011). Anti-herbivory defense of two Vicia species with and without extrafloral nectaries. Plant Ecology, 212, 743752.Google Scholar
Kersch, M. F. and Fonseca, C. R. (2005). Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology, 86, 21172126.Google Scholar
Kitajima, K., Llorens, A. M., Stefanescu, C. et al. (2012). How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytologist, 195, 640652.Google Scholar
Kobayashi, S., Asai, T., Fujimoto, Y. and Kohshima, S. (2008). Anti-herbivore structures of Paulownia tomentosa: morphology, distribution, chemical constituents and changes during shoot and leaf development. Annals of Botany, 101, 10351047.Google Scholar
Koptur, S. (1985). Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology, 66, 16391650.Google Scholar
Koptur, S. (1992). Extrafloral nectary-mediated interactions between insects and plants. Insect Plant Interactions, 4, 81129.Google Scholar
Koricheva, J. and Romero, G. Q. (2012). You get what you pay for: reward-specific trade-offs among direct and ant-mediated defences in plants. Biology Letters, 8, 628630.Google Scholar
Kost, C. and Heil, M. (2005). Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic and Applied Ecology, 6, 237248.CrossRefGoogle Scholar
Kost, C. and Heil, M. (2006). Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. Journal of Ecology, 94, 619628.Google Scholar
Kost, C. and Heil, M. (2008). The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature. Journal of Chemical Ecology, 34, 213.Google Scholar
Lach, L., Parr, C. L. and Abott, K. L. (2010). Ant Ecology. New York: Oxford University Press.Google Scholar
Letourneau, D. K. and Barbosa, P. (1999). Ants, Stem Borers, and Pubescence in Endospermum in Papua New Guinea1. Biotropica, 31, 295302.Google Scholar
LeVan, K. E., Hung, K. L. J., McCann, K. R., Ludka, J. T. and Holway, D. A. (2014). Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia, 174, 163171.Google Scholar
Li, T., Holopainen, J. K., Kokko, H., Tervahauta, A. I. and Blande, J. D. (2012). Herbivore-induced aspen volatiles temporally regulate two different indirect defences in neighbouring plants. Functional Ecology, 26, 11761185.CrossRefGoogle Scholar
Malé, P. J. G., Leroy, C., Dejean, A., Quilichini, A. and Orivel, J. (2012). An ant symbiont directly and indirectly limits its host plant’s reproductive success. Evolutionary Ecology, 26, 5563.Google Scholar
Maschwitz, U., Fiala, B., Davies, S. J. and Linsenmair, K. E. (1996). A south-east asian myrmecophyte with two alternative inhabitants: Camponotus or Crematogaster as partners of Macaranga lamellate. Ecotropica 2, 26132.Google Scholar
McKey, D. (1974). Ant-plants: selective eating of an unoccupied Barteria by a Colobus monkey. Biotropica, 6, 269270.Google Scholar
Millán-Cañongo, C., Orona-Tamayo, D. and Heil, M. (2014). Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis. Journal of Chemical Ecology, 40, 760769.Google Scholar
Miller, T. E. (2014). Plant size and reproductive state affect the quantity and quality of rewards to animal mutualists. Journal of Ecology, 102, 496507.CrossRefGoogle Scholar
Mithöfer, A. and Boland, W. (2012). Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology, 63, 431450.Google Scholar
Mody, K. and Linsenmair, K. E. (2004). Plant-attracted ants affect arthropod community structure but not necessarily herbivory. Ecological Entomology, 29, 217225.Google Scholar
Mondor, E. B. and Addicott, J. F. (2003). Conspicuous extrafloral nectaries are inducible in Vicia faba. Ecology Letters, 6, 495497.Google Scholar
Murase, K., Itioka, T., Nomura, M. and Yamane, S. (2003). Intraspecific variation in the status of ant symbiosis on a myrmecophyte, Macaranga bancana, between primary and secondary forests in Borneo. Population Ecology, 45, 221226.CrossRefGoogle Scholar
Ness, J. H. (2003). Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia, 134, 210218.Google Scholar
Ness, J. H. (2006). A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos, 113, 506514.Google Scholar
Newman, J. R. and Wagner, D. (2013). The influence of water availability and defoliation on extrafloral nectar secretion in quaking aspen (Populus tremuloides). Botany, 91, 761767.Google Scholar
Newman, J. R., Wagner, D. and Doak, P. (2015). Impact of extrafloral nectar availability and plant genotype on ant (Hymenoptera: Formicidae) visitation to quaking aspen (Salicaceae). The Canadian Entomologist, 148, 17.Google Scholar
Nogueira, A., Rey, P. J. and Lohmann, L. G. (2012). Evolution of extrafloral nectaries: adaptive process and selective regime changes from forest to savanna. Journal of Evolutionary Biology, 25, 23252340.Google Scholar
O’Dowd, D. J. (1979). Foliar nectar production and ant activity on a neotropical tree, Ochroma pyramidale. Oecologia, 43, 233248.Google Scholar
O’Dowd, D. J. (1982). Pearl bodies as ant food: an ecological role for some leaf emergences of tropical plants. Biotropica, 14, 4049.Google Scholar
Oliveira, K. N., Coley, P. D., Kursar, T. A. et al. (2015). The effect of symbiotic ant colonies on plant growth: a test using an Azteca-Cecropia system. PloS one, 10, e0120351.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P. et al. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science, 319, 192195.CrossRefGoogle ScholarPubMed
Philpott, S. M., Perfecto, I., Armbrecht, I. and Parr, C. L. (2010). Ant diversity and function in disturbed and changing habitats. Ant Ecology. New York: Oxford University Press, 137157.Google Scholar
Pulice, C. E. and Packer, A. A. (2008). Simulated herbivory induces extrafloral nectary production in Prunus avium. Functional Ecology, 22, 801807.Google Scholar
Radhika, V., Kost, C., Mithöfer, A. and Boland, W. (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences, 107, 1722817233.Google Scholar
Raine, N. E., Willmer, P. and Stone, G. N. (2002). Spatial structuring and floral avoidance behavior prevent ant-pollinator conflict in a Mexican ant-acacia. Ecology, 83, 30863096.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. London: University of Chicago Press.Google Scholar
Risch, S. J. and Rickson, F. R. (1981). Mutualism in which ants must be present before plants produce food bodies. Nature, 291, 149150.Google Scholar
Rosumek, F. B., Silveira, F. A., Neves, F. D. S. et al. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537549.Google Scholar
Rudgers, J. A. and Strauss, S. Y. (2004). A selection mosaic in the facultative mutualism between ants and wild cotton. Proceedings of the Royal Society of London B: Biological Sciences, 271, 24812488.Google Scholar
Rudgers, J. A., Strauss, S. Y. and Wendel, J. F. (2004). Trade-offs among anti-herbivore resistance traits: insights from Gossypieae (Malvaceae). American Journal of Botany, 91, 871880.Google Scholar
Rutter, M. T. and Rausher, M. D. (2004). Natural selection on extrafloral nectar production in Chamaecrista fasciculata: the costs and benefits of a mutualism trait. Evolution, 58, 26572668.Google Scholar
Schupp, E. W. and Feener, D. H. (1991). Phylogeny, lifeform, and habitat dependence of ant-defended plants in a Panamanian forest. In Ant-Plant Interactions, Huxley, C. R. and Cutler, D. F. (eds.). Oxford: Oxford University Press, pp. 175197.CrossRefGoogle Scholar
Slaymaker, D. H., Navarre, D. A., Clark, D. et al. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences, 99, 1164011645.Google Scholar
Smith, L. L., Lanza, J. and Smith, G. C. (1990). Amino acid concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology, 71, 107115.Google Scholar
Stamp, N. (2003). Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78, 2355.Google Scholar
Stanton, M. L. and Palmer, T. M. (2011). The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology, 92, 10731082.Google Scholar
Stephenson, A. G. (1982). The role of the extrafloral nectaries of Catalpa speciosa in limiting herbivory and increasing fruit production. Ecology, 63, 663669.Google Scholar
Steward, J. L. and Keeler, K. H. (1988). Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos, 53, 7986.Google Scholar
Trager, M. D., Bhotika, S., Hostetler, J. A. et al. (2010). Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS one, 5, e14308.Google Scholar
Trager, M. D. and Bruna, E. M. (2006). Effects of plant age, experimental nutrient addition and ant occupancy on herbivory in a neotropical myrmecophyte. Journal of Ecology, 94, 11561163.Google Scholar
Tripathi, S. N. and Raghubanshi, A. S. (2013). Seedling growth of five tropical dry forest tree species in relation to light and nitrogen gradients. Journal of Plant Ecology, 7, 250263.Google Scholar
Wagner, D. and Fleur Nicklen, E. (2010). Ant nest location, soil nutrients and nutrient uptake by ant associated plants: Does extrafloral nectar attract ant nests and thereby enhance plant nutrition? Journal of Ecology, 98, 614624.Google Scholar
Walters, D. (2011). Plant Defense: Warding off Attack by Pathogens, Herbivores and Parasitic Plants. Hoboken, NJ: John Wiley & Sons.Google Scholar
Wang, Y., Carrillo, J., Siemann, E. et al. (2013). Specificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree. Annals of Botany, mct129.Google Scholar
Webber, B. L., Abaloz, B. A. and Woodrow, I. E. (2007). Myrmecophilic food body production in the understorey tree, Ryparosa kurrangii (Achariaceae), a rare Australian rainforest taxon. New Phytologist, 173, 250263.Google Scholar
Weber, M. G. and Keeler, K. H. (2013). The phylogenetic distribution of extrafloral nectaries in plants. Annals of Botany, 111, 12511261.Google Scholar
Wäckers, F. L. and Bezemer, T. M. (2003). Root herbivory induces an above-ground indirect defence. Ecology Letters, 6, 912.CrossRefGoogle Scholar
Wäckers, F. L., Zuber, D., Wunderlin, R. and Keller, F. (2001). The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Annals of Botany, 87, 365370.Google Scholar
Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562565.Google Scholar
Xu, F. F. and Chen, J. (2015). Extrafloral nectar secretion is mainly determined by carbon fixation under herbivore-free condition in the tropical shrub Clerodendrum philippinum var. simplex. Flora-Morphology, Distribution, Functional Ecology of Plants, 217, 1013.Google Scholar
Yamawo, A. and Hada, Y. (2010). Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Annals of Botany, 106, 143148.Google Scholar
Yamawo, A., Hada, Y. and Suzuki, N. (2012a). Variations in direct and indirect defenses against herbivores on young plants of Mallotus japonicus in relation to soil moisture conditions. Journal of Plant Research, 125, 7176.Google Scholar
Yamawo, A., Katayama, N., Suzuki, N. and Hada, Y. (2012b). Plasticity in the expression of direct and indirect defence traits of young plants of Mallotus japonicus in relation to soil nutritional conditions. Plant Ecology, 213, 127132.Google Scholar
Yamawo, A., Tagawa, J., Hada, Y. and Suzuki, N. (2014). Different combinations of multiple defence traits in an extrafloral nectary bearing plant growing under various habitat conditions. Journal of Ecology, 102, 238247.Google Scholar
Yamawo, A., Tokuda, M., Katayama, N., Yahara, T. and Tagawa, J. (2015). Ant-attendance in extrafloral nectar-bearing plants promotes growth and decreases the expression of traits related to direct defenses. Evolutionary Biology, 42, 191198.Google Scholar

References

Andersen, A. N. (2000). A global ecology of rainforest ants: functional groups in relation to environmental stress and disturbance. In Ants: standard methods for measuring and monitoring biodiversity, ed. Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R.: Smithsonian Institution Press, pp. 3544.Google Scholar
Bascompte, J., Aizen, M., Fontaine, C. et al. (2010). Symposium 6: mutualistic networks. Bulletin of the Ecological Society of America 91(3), 367370.Google Scholar
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences 100, 93839387.Google Scholar
Bascompte, J., Jordano, P. & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431433.Google Scholar
Bentley, B. L. (1976). Plants bearing extrafloral nectaries and the associated ant community: Interhabitat differences in the reduction of herbivore damage. Ecology 57, 815820.Google Scholar
Blüthgen, N., Verhaagh, M., Goitía, W. et al. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125(2), 229240.Google Scholar
Campos-Navarrete, M. J., Abdala-Roberts, L., Munguía-Rosas, M. A. & Parra-Tabla, V. (2015). Are tree species diversity and genotypic diversity effects on insect herbivores mediated by ants? PloS One 10(8): e0132671.Google Scholar
Chavarro-Rodríguez, N., Díaz-Castelazo, C. & Rico-Gray, V. (2013). Characterization and functional ecology of the extrafloral nectar of Cedrela odorata in contrasting growth environments in central Veracruz, Mexico. Botany 91, 695701.Google Scholar
Cuautle, M. & Rico-Gray, V. (2003). The effect of wasps and ants on the reproductive success of the extrafloral nectaried plant. Turnera ulmifolia Turneraceae. Functional Ecology, 17, 417423.CrossRefGoogle Scholar
Dáttilo, W., Díaz-Castelazo, C. & Rico-Gray, V. (2014a). Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biological Journal of the Linnean Society 113, 405414.Google Scholar
Dáttilo, W., Fagundes, R., Gurka, C. A. Q. et al. (2014b). Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLoS One 9(6), e99838.Google Scholar
Dáttilo, W., Guimarães, P. R., & Izzo, T. J. (2013a). Spatial structure of ant–plant mutualistic networks. Oikos, 122, 16431648.Google Scholar
Dáttilo, W., Marquitti, F. M. D., Guimarães, P. R. & Izzo, T. J. (2014c). The structure of ant-plant ecological networks: is abundance enough?. Ecology 95, 475485.Google Scholar
Dáttilo, W., Rico-Gray, V., Rodrigues, D. J. & Izzo, T. J. (2013b). Soil and vegetation features determine the nested pattern of ant-plant networks in a tropical rainforest. Ecological Entomology 38, 374380.Google Scholar
Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H. M. et al. (2016). Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux 63(2), 207221.Google Scholar
Díaz-Castelazo, C., Guimarães, P., Jordano, P. et al. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91(3), 793801.Google Scholar
Díaz-Castelazo, C., Rico-Gray, V., Oliveira, P. S. & Cuautle, M. (2004). Extrafloral nectary-mediated ant–plant interactions in the coastal vegetation of Veracruz, Mexico: richness, occurrence, seasonality and ant foraging patterns. Ecoscience 11, 472481.Google Scholar
Díaz-Castelazo, C., Rico-Gray, V., Ortega, F. & Ángeles, G. (2005). Morphological and secretory characterization of extrafloral nectaries in plants of coastal Veracruz, Mexico. Annals of Botany 96(7), 11751189.Google Scholar
Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Raimundo, R. L. G. & Rico-Gray, V. (2013). Long–term temporal variation in the organization of an ant-plant network. Annals of Botany 111, 12851293.Google Scholar
Fernández-Martínez, M. J. & Díaz-Castelazo, C. (2009). Caracterización ecológica de Cedrela odorata y patrones de infestación por Hypsipyla grandella en selvas y plantaciones de Veracruz. In Serie memorias científicas 15. XXII Reunión científica Tecnológica Forestal y Agropecuarias, ed. INIFAP, Veracruz, México, pp. 301310.Google Scholar
Guimarães, P. R. Jr., Rico-Gray, V., Oliveira, P. S. et al. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology 17, 17971803.Google Scholar
Heil, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology 60, 213232.Google Scholar
Hernández-Villanueva, M. A. (2010). Interacción insecto planta mediada por nectarios extraflorales del cedro rojo (Cedrela odorata, Meliaceae) en selvas y plantaciones del centro de Veracruz. BSc thesis, Benemérita Universidad de Puebla. Puebla, México.Google Scholar
Jordano, P., Bascompte, J., & Olesen, J. M. (2003). Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters, 6, 6981.Google Scholar
Kersch, M. F. & Fonseca, C. R. (2005). Abiotic factors and the conditional outcome of an ant–plant mutualism. Ecology 86(8), 21172126.Google Scholar
Koptur, S. (2005). Nectar as fuel for plant protectors. In Plant-provided food for carnivorous insects: a protective mutualism and its applications, ed. Wäckers, F. L., van Rijn, P. C. J. & Bruin, J.. Cambridge: Cambridge University Press, pp. 75108.Google Scholar
Koptur, S. & Lawton, J. H. (1988). Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69, 278293.Google Scholar
López-Carretero, A., Díaz-Castelazo, C., Boege, K. & Rico-Gray, V. (2014). Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One 9(10), e110430.Google Scholar
Ness, J. H. & Bronstein, J. L. (2004). The effects of invasive ants on prospective ant mutualists. Biological Invasions 6, 445461.Google Scholar
Oliveira, P. S. & Freitas, A. V. L. (2004). Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91, 557570.Google Scholar
Oliveira, P. S., Rico-Gray, V., Díaz-Castelazo, C. & Castillo-Guevara, C. (1999). Interactions between ants, extrafloral nectaries and insect herbivores in neotropical coastal sand dunes: Herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Functional Ecology 13, 623631.CrossRefGoogle Scholar
Pacini, E. & Nepi, M. (2007). Nectar production and presentation. In Nectaries and nectar, ed. Nicolson, S. W., Nepi, M. & Pacini, E.. Dordrecht: Springer, pp. 167214.Google Scholar
Pemberton, R. W. (1988). The abundance of plants bearing extrafloral nectaries in Colorado and Mojave desert communities of Southern California. Madroño 35(3), 238246.Google Scholar
Pennington, T. D. & Sarukhán, J. (2005). Árboles tropicales de México: Manual para la identificación de las principales especies. 3rd ed. México, D. F. Fondo de cultura económica, UNAM.Google Scholar
Perfecto, I. (1990). Indirect and direct effects in a tropical agroecosystem: the maize-pest-ant system in Nicaragua. Ecology 71, 21252134.Google Scholar
Perfecto, I. (1991). Ants (Hymenoptera: Formicidae) as natural control agents of pests in irrigated maize in Nicaragua. Journal of Economic Entomology 84, 6570.Google Scholar
Perfecto, I. & Sediles, A. (1992). Vegetational diversity, ants (Hymenoptera: Formicidae), and herbivorous pests in a neotropical agroecosystem. Environmental Entomology 21, 6167.Google Scholar
Perfecto, I. & Vandermeer, J. H. (1994). Understanding biodiversity loss in agroecosystems: reduction of ant diversity resulting from transformation of the coffee ecosystem in Costa Rica. Entomological Trends in Agricultural Science 2, 713.Google Scholar
Perfecto, I. & Vandermeer, J. H. (2002). Quality of agroecological matrix in a tropical montane landscape: ants in coffee plantations in southern Mexico. Conservation Biology 16, 174182.Google Scholar
Philpott, S. M., Greenberg, R., Bichier, P. & Perfecto, I. (2004a). Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa. Oecologia 140, 140149.Google Scholar
Philpott, S. M., Maldonado, J., Vandermeer, J. & Perfecto, I. (2004b). Taking trophic cascades up a level: behaviorally-modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos 105, 141147.Google Scholar
Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R. Jr. & Holland, J. N. (2012). Abiotic factors shape temporal variation in the structure of a mutualistic ant-plant network. Arthropod-Plant Interactions 6, 189295.Google Scholar
Rico-Gray, V., García-Franco, J. G., Palacios-Ríos, M. et al. (1998). Geographical and seasonal variation in the diversity of ant-plant association in Mexico. Biotropica 30, 190200.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The ecology and evolution of ant–plant interactions. Chicago: University of Chicago Press.Google Scholar
Rudgers, J. A. & Gardener, M. (2004). Extrafloral nectar as a resource mediating multispecies interactions. Ecology 85, 14951502.Google Scholar
Rudgers, J. A. & Strauss, S. Y. (2004). A selection mosaic in the facultative mutualism between ants and wild cotton. Proceedings of the Royal Society of London B: Biological Sciences 271(1556), 24812488.Google Scholar
Sánchez-Galván, I. R., Díaz-Castelazo, C. & Rico-Gray, V. (2012). Effect of hurricane Karl on a plant–ant network occurring in coastal Veracruz, Mexico. Journal of Tropical Ecology 28, 603609.Google Scholar
Schupp, E. W. & Feener, D. H. (1991). Phylogeny, lifeform and habitat dependence of ant-defended plants in a Panamanian forest. In Ant-plant interactions, ed. Huxley, C. R. & Cutler, D. F., eds. Oxford: Oxford University Press, pp. 175197.Google Scholar
van Rijn, P. C., & Sabelis, M. W. (2005). Impact of plant-provided food on herbivore-carnivore dynamics. In Plant-provided food for carnivorous insects: a protective mutualism and its applications, ed. F. L. Wäckers, P. C. J. van Rijn & J. Bruin. Cambridge: Cambridge University Press, pp. 223266.Google Scholar
Waser, N. M. & Ollerton, J. (2006). Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press.Google Scholar
Yamawo, A. & Hada, Y. (2010). Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Annals of Botany, 106(1), 143148.Google Scholar
Zimmerman, J. G. (1932). Uber die extrafloralen Nektarien der Angiospermen. Beihefte zum Botanischen Zentralblatt 49, 99196.Google Scholar

References

Andrews, P., and Bamford, M.. (2008). Past and present vegetation ecology of Laetoli, Tanzania. Journal of Human Evolution 54,7898.Google Scholar
Archetti, M., Ubeda, F., Fudenberg, D., Green, J., Pierce, N. E., and Yu, D. W.. (2011). Let the right one in: a microeconomic approach to partner choice in mutualisms. American Naturalist 177,7585.Google Scholar
Archibald, S. (2016). Managing the human component of fire regimes: Lessons from Africa. Philosophical Transactions of The Royal Society B 371:20150346. http://dx.doi.org/10.1098/rstb.2015.0346Google Scholar
Archibald, S., Staver, A.C., and Levin, S.A.. (2012). Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America 109, 847852.Google Scholar
Arshad, M. A. (1981). Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semi-arid savanna of Kenya. Soil Science 132,161174.Google Scholar
Baker, C. (2015). Complexity in Mutualisms: Indirect Interactions with Multiple Parties. Doctoral Dissertation, Harvard University, Cambridge, MA.Google Scholar
Belsky, A. J., Amundson, R. G., Duxbury, J. M., Riha, S. J., Ali, A. R., and Mwonga, S. M.. (1989). The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology 26,10051024.Google Scholar
Brody, A. K., Palmer, T. M., Fox-Dobbs, K. and Doak, D. F.. (2010). Termites, vertebrate herbivores and the fruiting success of Acacia drepanolobium. Ecology 91,399407.Google Scholar
Chomicki, G., Ward, P. S., and Renner, S. S.. (2015). Macroevolutionary assembly of ant/plant symbioses. Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B-Biological Sciences 282,20152200.Google Scholar
Cochard, R., and Edwards, P. J.. (2011). Structure and biomass along an Acacia zanzibarica woodland-savanna gradient in a former ranching area in coastal Tanzania. Journal of Vegetation Science 22,475489.Google Scholar
Davidson, D. W., Longino, J. T., and Snelling, R. R.. (1988). Pruning of host plant neighbors by ants: An experimental approach. Ecology 69,801808.Google Scholar
Davidson, D. W., and McKey, D.. (1993). The evolutionary ecology of symbiotic ant – plant relationships. Journal of Hymenoptera Research 2,1383.Google Scholar
Dayton, P. K. (1972). Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Pages 8196. In Proceedings of the Colloquium on Conservation Problems. Allen Press, Lawrence, Kansas.Google Scholar
Fiala, B., Maschwitz, U., Pong, T. Y., and Helbig, A. J.. (1989). Studies of a South East Asian ant-plant association: protection of Macaranga trees by Crematogaster borneensis. Oecologia 79,463470.Google Scholar
Ford, A. T., Goheen, J. R., Otieno, T. O., Arcese, P., Palmer, T. M., Woodroffe, R., Ward, D., and Pringle, R. M.. (2014). Large carnivores make savanna tree communities less thorny. Science 346,346349.Google Scholar
Fox-Dobbs, K., Doak, D. F., Brody, A. K., and Palmer, T. M.. (2010). Termites create spatial structure and govern ecosystem function by affecting N-2 fixation in an East African savanna. Ecology 91,12961307.Google Scholar
Frederickson, M. E. (2009). Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. American Naturalist 173,675681.CrossRefGoogle Scholar
Frederickson, M. E., Ravenscraft, A., Miller, G. A., Hernandez, L. M. A., Booth, G., and Pierce, N. E.. (2012). The direct and ecological costs of an ant-plant symbiosis. American Naturalist 179,768778.Google Scholar
Goheen, J. R., and Palmer, T. M.. (2010). Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savanna. Current Biology 20,17681772.Google Scholar
Heil, M. (2013. Let the best one stay: screening of ant defenders by Acacia host plants functions independently of partner choice or host sanctions. Journal of Ecology 101,684688.Google Scholar
Heil, M., and McKey, D.. (2003). Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology Evolution and Systematics 34,425453.Google Scholar
Hocking, B. (1970). Insect associations with the swollen thorn acacias. Transactions of the Royal Entomological Society of London 122,211255.Google Scholar
Holdo, R. M., Sinclair, A. R. E., Dobson, A. P., Metzger, K. L., Bolker, B. M., Ritchie, M. E., and Holt, R. D.. (2009). A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. Plos Biology 7, e1000210.Google Scholar
Huntzinger, M., Karban, R., Young, T. P., and Palmer, T. M.. (2004). Relaxation of induced indirect defenses of acacias following exclusion of mammalian herbivores. Ecology 85,609614.Google Scholar
Huxley, C. R. (1978). The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and the relationships between their morphology, ant occupants, physiology and ecology. New Phytologist 80,231268.Google Scholar
Janzen, D. H. (1966). Coevolution of mutualism between ants and acacias in Central America. Evolution 20,249275.Google Scholar
Janzen, D. H. (1969). Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology 50,147153.Google Scholar
Madden, D., and Young, T. P.. (1992). Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91,235238.Google Scholar
Martins, D. J. (2010). Not all ants are equal: obligate acacia ants provide different levels of protection against mega-herbivores. African Journal of Ecology 48,11151122.Google Scholar
Martins, D. J. (2013). Effect of parasitoids, seed-predators and ant-mutualists on fruiting success and germination of Acacia drepanolobium in Kenya. African Journal of Ecology 51,562570.Google Scholar
Midgley, J. J., Sawe, T., Abanyam, P., Hintsa, K., and Gacheru, P.. (2016). Spinescent East African savannah acacias also have thick bark, suggesting they evolved under both an intense fire and herbivory regime. African Journal of Ecology 54,118120.Google Scholar
Morawetz, W., henzl, M., and Wallnöfer, B.. (1992). Tree killing by herbicide producing ants for the establishment of pure Tococa occidentalis populations in the Peruvian Amazon. Biodiversity and Conservation 1,1933.Google Scholar
Ness, J. H. (2006). A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113,506514.Google Scholar
Okello, B. D., O’Connor, T. G., and Young, T. P.. (2001). Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. Forest Ecology and Management 142,143153.Google Scholar
Okello, B. D., and Young, T. P.. (2000). Effects of fire, bruchid beetles and soil type on the germination and seedling establishment of Acacia drepanolobium. African Journal of Range and Forage Science 17,4561.Google Scholar
Okello, B. D., Young, T. P., Riginos, C., Kelly, D., and O’Connor, T. G.. (2008). Short-term survival and long-term mortality of Acacia drepanolobium after a controlled burn. African Journal of Ecology 46,395401.CrossRefGoogle Scholar
Palmer, T. M. (2001). Competition and Coexistence in a Guild of African Acacia-Ants. PhD dissertation. University of California Davis, Davis, CA.Google Scholar
Palmer, T. M. (2003). Spatial habitat heterogeneity influences competition and coexistence in an African acacia ant guild. Ecology 84,28432855.Google Scholar
Palmer, T. M. (2004). Wars of attrition: colony size determines competitive outcomes in a guild of African acacia-ants. Animal Behaviour 68,9931004.Google Scholar
Palmer, T. M., and Brody, A. K.. (2007). Mutualism as reciprocal exploitation: ant guards defend foliar but not reproductive structures of an African ant-plant. Ecology 88,30043011.Google Scholar
Palmer, T. M., and Brody, A. K.. (2013). Enough is enough: the effects of symbiotic ant abundance on herbivory, growth and reproduction in an African acacia. Ecology 94,683691.Google Scholar
Palmer, T. M., Doak, D. F., Stanton, M. L., Bronstein, J. L., Kiers, E. T., Young, T. P., Goheen, J. R., and Pringle, R. M.. (2010). Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences of the United States of America 107,1723417239.Google Scholar
Palmer, T. M., Pringle, E. G., Stier, A. C., and Holt, R. D.. (2015). Mutualism in a community context. Pages 159180. In Bronstein, J. L., editor. Mutualism. Oxford University Press, Oxford.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M., and Karban, R.. (2008a). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African Savanna. Science 319,192195.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M., and Karban, R.. (2008b). Putting ant-Acacia mutualisms to the fire – response. Science 319,17601761.Google Scholar
Palmer, T. M., Young, T. P., and Stanton, M. L.. (2002). Burning bridges: Priority effects and the persistence of a competitively subordinate acacia-ant in Laikipia, Kenya. Oecologia 133,372379.Google Scholar
Palmer, T. M., Young, T. P., Stanton, M. L., and Wenk, E.. (2000). Short-term dynamics of an acacia ant community in Laikipia, Kenya. Oecologia 123,425435.Google Scholar
Pringle, E. G., Akcay, E., Raab, T. K., Dirzo, R., and Gordon, D. M.. (2013). Water stress strengthens mutualism among ants, trees, and scale insects. Plos Biology 11, e1001705.Google Scholar
Pringle, E. G., Dirzo, R., and Gordon, D. M.. (2011). Indirect benefits of symbiotic coccoids for an ant-defended myrmecophytic tree. Ecology 92,3746.Google Scholar
Pringle, R. M., Doak, D. F., Brody, A. K., Jocque, R., and Palmer, T. M.. (2010). Spatial pattern enhances ecosystem functioning in an African savanna. Plos Biology 8, e1000377.Google Scholar
Pringle, R. M., and Fox-Dobbs, K.. (2008). Coupling of canopy and understory food webs by ground-dwelling predators. Ecology Letters 11,13281337.Google Scholar
Pringle, R. M., Prior, K. M., Palmer, T. M., Young, T. P., and Goheen, J. R.. (2016). Large herbivores promote habitat specialization and beta diversity of African savanna trees. Ecology 97,2640–2657.Google Scholar
Riginos, C. (2015). Climate and the landscape of fear in an African savanna. Journal of Animal Ecology 84,124133.Google Scholar
Riginos, C., Grace, J. B., Augustine, D. J., and Young, T. P.. (2009). Local versus landscape-scale effects of savanna trees on grasses. Journal of Ecology 97,13371345.Google Scholar
Riginos, C., Karande, M. A., Rubenstein, D. I., and Palmer, T. M.. (2015). Disruption of a protective ant-plant mutualism by an invasive ant increases elephant damage to savanna trees. Ecology 96,654661.Google Scholar
Rudolph, K. P., and McEntee, J. P.. (2016). Spoils of war and peace: enemy adoption and queen-right colony fusion follow costly intraspecific conflict in acacia ants. Behavioral Ecology 27,793802.Google Scholar
Ruiz-Guajardo, J. C., Grossenbacher, D., Grosberg, R. K., Palmer, T. M., and Stanton, M. L.. (2017). Impacts of worker density in colony-level aggression, expansion, and survival of the acacia-ant Crematogaster mimosae. Ecological Monographs 87: 246259.Google Scholar
Sagers, C. L., Ginger, S. M., and Evans, R. D.. (2000). Carbon and nitrogen isotopes trace nutrient exchange in an ant-plant mutualism. Oecologia 123,582586.Google Scholar
Sensenig, R. L., Kimuyu, D. K., Ruiz-Guajardo, J. C., Riginos, C., and Young, T. P.. (2017). Fire disturbance disrupts an acacia ant-plant mutualism in favor of a subordinate ant species. Ecology 98, 14551464.Google Scholar
Stanton, M. L. (2003). Interacting guilds: moving beyond the pairwise perspective on mutualisms. American Naturalist 162,S10S23.Google Scholar
Stanton, M. L., and Palmer, T. M.. (2011). The high cost of mutualism: effects of four species of East African ant symbionts on their myrmecophyte host tree. Ecology 92,10731082.Google Scholar
Stanton, M. L., Palmer, T. M., and Young, T. P.. (2002). Competition-colonization trade-offs in a guild of African acacia-ants. Ecological Monographs 72,347363.Google Scholar
Stanton, M. L., Palmer, T. M., and Young, T. P.. (2005). Ecological barriers to early colony establishment in three coexisting acacia-ant species in Kenya. Insectes Sociaux 52,393401.Google Scholar
Stanton, M. L., Palmer, T. M., Young, T. P., Evans, A., and Turner, M. L.. (1999). Sterilization and canopy modification of a swollen thorn acacia tree by a plant-ant. Nature 401,578581.Google Scholar
Stapley, L. (1998). The interaction of thorns and symbiotic ants as an effective defence mechanism of swollen-thorn acacias. Oecologia 115,401405.Google Scholar
Styrsky, J. D., and Eubanks, M. D.. (2007). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B-Biological Sciences 274,151164.Google Scholar
Tarnita, C. E., Palmer, T. M., and Pringle, R. M.. (2014). Colonisation and competition dynamics can explain incomplete sterilisation parasitism in ant-plant symbioses. Ecology Letters 17,12901298.Google Scholar
Visiticao, J. M. (2011). Multi-Species Interactions in African Ant-Acacias. PhD Dissertation, Harvard University, Cambridge, MA.Google Scholar
Vollrath, F., and Douglas-Hamilton, I.. (2002). African bees to control African elephants. Naturwissenschaften 89,508511.Google Scholar
Willmer, P. G., Nuttman, C. V., Raine, N. E., Stone, G. N., Pattrick, J. G., Henson, K., Stillman, P., McIlroy, L., Potts, S. G., and Knudsen, J. T.. (2009). Floral volatiles controlling ant behaviour. Functional Ecology 23,888900.Google Scholar
Willmer, P. G., and Stone, G. N.. (1997). How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388,165167.Google Scholar
Wood, W. F., and Chong, B.. (1975). Alarm pheremones of the east African acacia symbionts: Crematogaster mimosae and C. negriceps. Journal of the Georgia Entomological Society 10,332334.Google Scholar
Young, T. P., Okello, B. D., Kinyua, D., and Palmer, T. M.. (1998). KLEE: a long-term multi-species herbivore exclusion experiment in Laikipia, Kenya. African Journal of Range Forage Science 14,94102.Google Scholar
Young, T. P., Stubblefield, C. H., and Isbell, L. A.. (1997). Ants on swollen-thorn acacias: species coexistence in a simple system. Oecologia 109,98107.Google Scholar
Yu, D. W., Wilson, H. B., Frederickson, M. E., Palomino, W., De la Colina, R., Edwards, D. P., and Balareso, A. A.. (2004). Experimental demonstration of species coexistence enabled by dispersal limitation. Journal of Animal Ecology 73,11021114.Google Scholar

References

Bale, J. S., Masters, G. J., Hodkinson, I. D. et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 116.Google Scholar
Ballhorn, D. J., Schmitt, I., Fankhauser, J. D., Katagiri, F. and Pfanz, H. (2011). CO2-mediated changes of plant traits and their effects on herbivores are determined by leaf age. Ecological Entomology, 36, 113.Google Scholar
Barton, B. T. and Ives, A. R. (2014). Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 95, 1479–84.Google Scholar
Bascompte, J. and Jordano, P. (2013). Mutualistic networks. Princeton: Princeton University Press.Google Scholar
Blatrix, R., Bouamer, S., Morand, S. and Selosse, M. A. (2009). Ant-plant mutualisms should be viewed as symbiotic communities. Plant Signaling & Behavior, 4, 554–6. doi:10.1111/j.1469-8137.2009.02793.xGoogle Scholar
Blatrix, R., Djiéto-Lordon, C., Mondolot, L. et al. (2012). Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proceedings of the Royal Society B: Biological Sciences, 279, 3940–7. doi:10.1098/rspb.2012.1403.Google Scholar
Blatrix, R., McKey, D. and Born, C. (2013). Consequences of past climate change for species engaged in obligatory interactions. Comptes Rendus Geoscience, 345, 306–15.Google Scholar
Brodie, J. F., Aslan, C. E., Rogers, H. S. et al. (2014). Secondary extinctions of biodiversity. Trends in Ecology & Evolution, 29, 664–72.Google Scholar
Bruna, E. M., Vasconcelos, H. L. and Heredia, S. (2005). The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biological Conservation, 124, 209–16. doi:10.1016/j.biocon.2005.01.026.Google Scholar
Chomicki, G., Ward, P. S. and Renner, S. S. (2015). Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proceedings of the Royal Society B-Biological Sciences, 282, 20152200. doi:10.1098/rspb.2015.2200.Google Scholar
Coley, P. D. (1998). Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Climatic Change, 39, 455–72.Google Scholar
Cook, S. C. and Davidson, D. W. (2006). Nutritional and functional biology of exudate-feeding ants. Entomologia Experimentalis et Applicata, 118, 110.Google Scholar
Couture, J. J., Meehan, T. D., Kruger, E. L. and Lindroth, R. L. (2015). Insect herbivory alters impact of atmospheric change on northern temperate forests. Nature Plants, 1, 15016.Google Scholar
Dalecky, A., Debout, G., Estoup, A., McKey, D. B. and Kjellberg, F. (2007). Changes in mating system and social structure of the ant Petalomyrmex phylax are associated with range expansion in Cameroon. Evolution, 61, 579–95. doi:10.1111/j.1558-5646.2007.00044.x.Google Scholar
Dalecky, A., Gaume, L., Schatz, B., McKey, D. and Kjellberg, F. (2005). Facultative polygyny in the plant-ant Petalomyrmex phylax (Hymenoptera: Formicinae): sociogenetic and ecological determinants of queen number. Biological Journal of the Linnean Society, 86, 133–51.Google Scholar
Dáttilo, W., Izzo, T. J., Vasconcelos, H. L. and Rico-Gray, V. (2013). Strength of the modular pattern in Amazonian symbiotic ant–plant networks. Arthropod-Plant Interactions, 7, 455–61.Google Scholar
Davidson, D. W. (2005). Ecological stoichiometry of ants in a New World rain forest. Oecologia, 142, 221–31.Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. and Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969–72. doi:10.1126/science.1082074.Google Scholar
Davies, S. J., Lum, S. K. Y., Chan, R. and Wang, L. K. (2001). Evolution of myrmecophytism in western Malesian Macaranga (Euphorbiaceae). Evolution, 55, 1542–59.Google Scholar
Debout, G., Dalecky, A., Ngomi, A. and McKey, D. (2009). Dynamics of species coexistence: maintenance of a plant-ant competitive metacommunity. Oikos, 118, 873–84. doi:10.1111/j.1600-0706.2009.16317.x.Google Scholar
Defossez, E., Djiéto-Lordon, C., McKey, D., Selosse, M. A. and Blatrix, R. (2011). Plant-ants feed their host plant, but above all a fungal symbiont to recycle nitrogen. Proceedings of the Royal Society B: Biological Sciences, 278, 1419–26. doi:10.1098/rspb.2010.1884.Google Scholar
Defossez, E., Selosse, M. A., Dubois, M. P. et al. (2009). Ant-plants and fungi: a new threeway symbiosis. New Phytologist, 182, 942–9. doi:10.1111/j.1469-8137.2009.02793.x.Google Scholar
DeLucia, E. H., Nabity, P. D., Zavala, J. A. and Berenbaum, M. R. (2012). Climate change: resetting plant-insect interactions. Plant Physiology, 160, 1677–85.Google Scholar
Diamond, J. (2002). Evolution, consequences and future of plant and animal domestication. Nature, 418, 700–7.Google Scholar
Diamond, S. E., Sorger, D. M., Hulcr, J. et al. (2012). Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology, 18, 448–56. doi:10.1111/j.1365-2486.2011.02542.x.Google Scholar
Djiéto-Lordon, C., Dejean, A., Gibernau, M., Hossaert-McKey, M. and McKey, D. (2004). Symbiotic mutualism with a community of opportunistic ants: protection, competition, and ant occupancy of the myrmecophyte Barteria nigritana (Passifloraceae). Acta Oecologica, 26, 109–16.Google Scholar
Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. Functional Ecology, 23, 3847. doi:10.1111/j.1365-2435.2008.01442.x.Google Scholar
Duarte Rocha, C. F. and Godoy Bergallo, H. (1992). Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia, 91, 249–52.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. and Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276, 3037–45. doi:10.1098/rspb.2009.0413.Google Scholar
Ellers, J., Kiers, T. E., Currie, C. R., McDonald, B. R. and Visser, B. (2012). Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15, 1071–82.Google Scholar
Emer, C., Venticinque, E. M. and Fonseca, C. R. (2013). Effects of dam-induced landscape fragmentation on Amazonian ant-plant mutualistic networks. Conservation Biology, 27, 763–73. doi:10.1111/cobi.12045.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S. et al. (2011). Trophic downgrading of planet Earth. Science, 333, 301–6.Google Scholar
Fan, Y. and Wernegreen, J. J. (2013). Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Microbial Ecology, 66, 727–33.Google Scholar
Fayle, T. M., Edwards, D. P., Foster, W. A., Yusah, K. M. and Turner, E. C. (2015). An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia, 178, 441–50.Google Scholar
Fitzpatrick, G., Davidowitz, G. and Bronstein, J. L. (2013). An herbivore’s thermal tolerance is higher than that of the ant defenders in a desert protection mutualism. Sociobiology, 60, 252–8.Google Scholar
Fitzpatrick, G., Lanan, M. C. and Bronstein, J. L. (2014). Thermal tolerance affects mutualist attendance in an ant–plant protection mutualism. Oecologia, 176, 129–38.Google Scholar
Fontúrbel, F. E. and Murúa, M. M. (2014). Microevolutionary effects of habitat fragmentation on plant-animal interactions. Advances in Ecology, 2014, 379267.Google Scholar
Frederickson, M. E. (2005). Ant species confer different partner benefits on two neotropical myrmecophytes. Oecologia, 143, 387–95. doi:10.1007/s00442-004-1817-7.Google Scholar
Frederickson, M. E. (2009). Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. The American Naturalist, 173, 675–81. doi:10.1086/597608Google Scholar
Frederickson, M. E., Ravenscraft, A., Hernandez, L. M. A. et al. (2013). What happens when ants fail at plant defence? Cordia nodosa dynamically adjusts its investment in both direct and indirect resistance traits in response to herbivore damage. Journal of Ecology, 101, 400–9.Google Scholar
Frederickson, M. E., Ravenscraft, A., Miller, G. A. et al. (2012). The direct and ecological costs of an ant-plant symbiosis. The American Naturalist, 179, 768–78. doi:10.1086/665654.Google Scholar
Gaume, L., McKey, D. and Anstett, M. C. (1997). Benefits conferred by “timid” ants: active anti-herbivore protection of the rainforest tree Leonardoxa africana by the minute ant Petalomyrmex phylax. Oecologia, 112, 209–16.Google Scholar
Gaume, L., McKey, D. and Terrin, S. (1998). Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London, Series B, 265, 569–75.Google Scholar
Guimarães, P. R., Rico-Gray, V., dos Reis, S. F. and Thompson, J. N. (2006). Asymmetries in specialization in ant-plant mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 273, 2041–7.Google Scholar
Heil, M., Hilpert, A., Fiala, B. and Linsenmair, K. E. (2001). Nutrient availability and indirect (biotic) defence in a Malaysian ant-plant. Oecologia, 126, 404–8.Google Scholar
Ings, T. C., Montoya, J. M., Bascompte, J. et al. (2009). Ecological networks – beyond food webs. Journal of Animal Ecology, 78, 253–69.Google Scholar
Janzen, D. H. (1973). Dissolution of mutualism between Cecropia and its Azteca ants. Biotropica, 5, 1528.Google Scholar
Janzen, D. H. (1974). The deflowering of Central America. Natural History, 83, 48.Google Scholar
Johnson, N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631–47. doi:10.1111/j.1469-8137.2009.03110.x.Google Scholar
Kautz, S., Lumbsch, H. T., Ward, P. S. and Heil, M. (2009). How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution, 63, 839–53. doi:10.1111/j.1558-5646.2008.00594.x.Google Scholar
Kiers, E. T. and Denison, R. F. (2008). Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution and Systematics, 39, 215–36. doi:10.1146/annurev.ecolsys.39.110707.173423.Google Scholar
Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. and Bronstein, J. L. (2010). Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 13, 1459–74. doi:10.1111/j.1461-0248.2010.01538.x.Google Scholar
Kokolo, B., Atteke, C., Ibrahim, B. and Blatrix, R. (2016). Pattern of specificity in the tripartite symbiosis between Barteria plants, ants and Chaetothyriales fungi. Symbiosis, 69, 169–74. doi:10.1007/s13199-016-0402-2.Google Scholar
Kuussaari, M., Bommarco, R., Heikkinen, R. K. et al. (2009). Extinction debt: a challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564–71.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizao, R. C. C. et al. (2011). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667. doi:10.1016/j.biocon.2010.09.021.Google Scholar
Léotard, G., Debout, G., Dalecky, A. et al. (2009). Range expansion drives dispersal evolution in an equatorial three-species symbiosis. Plos One, 4, e5377.Google Scholar
Leroy, C., Sejalon-Delmas, N., Jauneau, A. et al. (2011). Trophic mediation by a fungus in an ant-plant mutualism. Journal of Ecology, 99, 583–90. doi:10.1111/j.1365-2745.2010.01763.x.Google Scholar
Lindroth, R. L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 36, 221.Google Scholar
Lortie, C. J. (2007). An ecological tardis: the implications of facilitation through evolutionary time. Trends in Ecology & Evolution, 22, 627–30.Google Scholar
Marquis, M., Del Toro, I. and Pelini, S. L. (2014). Insect mutualisms buffer warming effects on multiple trophic levels. Ecology, 95, 913.Google Scholar
Maschwitz, U., Fiala, B., Dumpert, K., bin Hashim, R. and Sudhaus, W. (2016). Nematode associates and bacteria in ant-tree symbioses. Symbiosis, 69, 17. doi:10.1007/s13199-015-0367-6.Google Scholar
Mayer, V. E., Frederickson, M. E., McKey, D. and Blatrix, R. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist, 202, 749–64. doi:10.1111/nph.12690.Google Scholar
McKey, D. (1974). Ant-plants: selective eating of an unoccupied Barteria by a Colobus monkey. Biotropica, 6, 269–70.Google Scholar
McKey, D., Gaume, L., Brouat, et al. (2005). The trophic structure of tropical ant-plant-herbivore interactions: community consequences and coevolutionary dynamics. In Biotic interactions in the tropics: Their role in the maintenance of species diversity, Burselm, D., Pinard, M., Hartley, S., eds. Cambridge: Cambridge University Press, pp. 386413.Google Scholar
Merilä, J. and Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 7, 114.Google Scholar
Michelangeli, F. A. (2005). Tococa (Melastomataceae). New York: New York Botanical Garden Press.Google Scholar
Moraes, S. C. and Vasconcelos, H. L. (2009). Long-term persistence of a neotropical ant-plant population in the absence of obligate plant-ants. Ecology, 90, 2375–83.Google Scholar
Moran, N. A. and Baumann, P. (2000). Bacterial endosymbionts in animals. Current Opinion in Microbiology, 3, 270–5.Google Scholar
Niziolek, O. K., Berenbaum, M. R. and DeLucia, E. H. (2013). Impact of elevated CO2 and increased temperature on Japanese beetle herbivory. Insect Science, 20, 513–23.Google Scholar
Orivel, J., Lambs, L., Malé, P. J. G., Leroy, C., Grangier, J., Otto, T., Quilichini, A. and Dejean, A. (2011). Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia, 165, 369–76.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P. et al. (2008). Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science, 319, 192–5.Google Scholar
Passmore, H. A., Bruna, E. M., Heredia, S. M. and Vasconcelos, H. L. (2012). Resilient networks of ant-plant mutualists in Amazonian forest fragments. Plos One, 7, e40803. doi:10.1371/journal.pone.0040803.Google Scholar
Peccoud, J., Piatscheck, F., Yockteng, R. et al. (2013). Multi-locus phylogenies of the genus Barteria (Passifloraceae) portray complex patterns in the evolution of myrmecophytism. Molecular Phylogenetics and Evolution, 66, 824–32.Google Scholar
Pellissier, L., Litsios, G., Fiedler, K. et al. (2012). Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. Journal of Biogeography, 39, 1782–90.Google Scholar
Phillips, B. L., Brown, G. P., Webb, J. K. and Shine, R. (2006). Invasion and the evolution of speed in toads. Nature, 439, 803. doi:10.1038/439803a.Google Scholar
Pringle, E. G. (2016). Integrating plant carbon dynamics with mutualism ecology. New Phytologist, 210, 71–5.Google Scholar
Pringle, E. G., Akçay, E., Raab, T. K., Dirzo, R. and Gordon, D. M. (2013). Water stress strengthens mutualism among ants, trees and scale insects. PLoS Biology, 11, e1001705.Google Scholar
Putz, F. E. and Holbrook, N. M. (1988). Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos, 53, 121–5. doi:10.2307/3565671.Google Scholar
Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J. and Rejmanek, M. (2000). Plant invasions – the role of mutualisms. Biological Reviews, 75, 6593.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The ecology and evolution of ant-plant interactions. Chicago and London: University of Chicago Press.Google Scholar
Robinson, E. A., Ryan, G. D. and Newman, J. A. (2012). A meta-analytical review of the effects of elevated CO2 on plant–arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist, 194, 321–36.Google Scholar
Russell, J. A., Moreau, C. S., Goldman-Huertas, B. et al. (2009). Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America, 106, 21236–41. doi:10.1073/pnas.0907926106.Google Scholar
Ryalls, J. M., Moore, B. D., Riegler, M. et al. (2016). Climate and atmospheric change impacts on sap-feeding herbivores: a mechanistic explanation based on functional groups of primary metabolites. Functional Ecology, 41, 161–171. doi:10.1111/1365–2435.12715.Google Scholar
Stiling, P. and Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823–42.Google Scholar
Stuble, K. L., Pelini, S. L., Diamond, S. E. et al. (2013). Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 3, 482–91.Google Scholar
Sun, Y. C., Jing, B. B. and Ge, F. (2009). Response of amino acid changes in Aphis gossypii (Glover) to elevated CO2 levels. Journal of Applied Entomology, 133, 189–97.Google Scholar
Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences, 278, 1823–30.Google Scholar
Thomas, C. D., Bodsworth, E. J., Wilson, R. J. et al. (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411, 577–81.Google Scholar
Thompson, J. A. (2005). The geographic mosaic of coevolution. Chicago: University of Chicago Press.Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351–63. doi:10.1111/j.1461-0248.2008.01250.x.Google Scholar
Valiente-Banuet, A., Rumebe, A. V., Verdú, M. and Callaway, R. M. (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences of the United States of America, 103, 16812–7.Google Scholar
Vitousek, P. M., Aber, J. D., Howarth, R. W. et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–50. doi:10.2307/2269431.Google Scholar
Vitousek, P. M. and Walker, L. R. (1989). Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecological Monographs, 59, 247–65.Google Scholar
Vittecoq, M., Djiéto-Lordon, C., McKey, D. and Blatrix, R. (2012). Range expansion induces variation in a behavioural trait in an ant-plant mutualism. Acta Oecologica, 38, 84–8.Google Scholar
Warbrick-Smith, J., Behmer, S. T., Lee, K. P., Raubenheimer, D. and Simpson, S. J. (2006). Evolving resistance to obesity in an insect. Proceedings of the National Academy of Sciences of the United States of America, 103, 14045–9.Google Scholar
Wernegreen, J. J. (2012). Mutualism meltdown in insects: bacteria constrain thermal adaptation. Current Opinion in Microbiology, 15, 255–62.Google Scholar
Wilf, P. and Labandeira, C. C. (1999). Response of plant-insect associations to Paleocene-Eocene warming. Science, 284, 2153–6.Google Scholar
Yu, D. W. and Pierce, N. E. (1998). A castration parasite of an ant-plant mutualism. Proceedings of the Royal Society of London, Series B, 265, 375–82.Google Scholar
Yu, D. W., Wilson, H. B., Frederickson, M. E. et al. (2004). Experimental demonstration of species coexistence enabled by dispersal limitation. Journal of Animal Ecology, 73, 1102–14.Google Scholar
Zhang, S., Zhang, Y. and Ma, K. (2012). The ecological effects of the ant–hemipteran mutualism: a meta-analysis. Basic and Applied Ecology, 13, 116–24.Google Scholar
Zvereva, E. L. and Kozlov, M. V. (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Global Change Biology, 12, 2741.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×