Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T02:09:22.071Z Has data issue: false hasContentIssue false

5 - Global Change Impacts on Ant-Mediated Seed Dispersal in Eastern North American Forests

from Part II - Ant-Seed Interactions and Man-Induced Disturbance

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 93 - 111
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrew, N. R., Hart, R. A., Jung, M.-P., Hemmings, Z. and Terblanche, J. S. (2013). Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Journal of Insect Physiology, 59, 870880.Google Scholar
Arnan, X., Rodrigo, A. and Retana, J. (2007). Uncoupling the effects of shade and food resources of vegetation on Mediterranean ants: an experimental approach at the community level. Ecography, 30, 161172.CrossRefGoogle Scholar
Bale, M. T., Zettler, J. A., Robinson, B. A., Spira, T. P. and Allen, C. R. (2003). Yellow jackets may be an underestimated component of an ant-seed mutualism. Southeastern Naturalist, 2, 609614.CrossRefGoogle Scholar
Banschbach, V. S., Yeamans, R., Brunelle, A., Gulka, A. and Holmes, M. (2012). Edge effects on community and social structure of northern temperate deciduous forest ants. Psyche, 2012, 548260.Google Scholar
Beattie, A. J. (1978). Plant-animal interactions affecting gene flow in Viola. In The Pollination of Flowers by Insects, ed. Richards, A. J. London: Academic Press, pp. 151164.Google Scholar
Beattie, A. J. and Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107115.Google Scholar
Beattie, A. J. and Hughes, L. (2002). Ant-plant interactions. In Plant-Animal Interactions: An Evolutionary Approach, ed. Herrera, C. M. and Pellmyr, O. Oxford: Blackwell Science, pp. 211235.Google Scholar
Bednar, D. M. (2010). Pachycondyla (=Brachyponera) chinensis Predation on Reticuletermes virginicus and Competition with Aphaenogaster rudis. Master of Science Thesis, North Carolina State University, USA.Google Scholar
Bednar, D. M. and Silverman, J. (2011). Use of termites, Reticulitermes virginicus, as a springboard in the invasive success of a predatory ant, Pachycondyla (=Brachyponera) chinensis. Insectes Sociaux, 58, 459467.CrossRefGoogle Scholar
Bertelsmeier, C., Guenard, B. and Courchamp, F. (2013). Climate change may boost the invasion of the Asian needle ant. PLoS ONE, 8, e75438.Google Scholar
Bertelsmeier, C., Luque, G. M., Hoffmann, B. D. and Courchamp, F. (2015). Worldwide ant invasions under climate change. Biodiversity Conservation, 24, 117128.Google Scholar
Bond, W. and Slingsby, P. (1984). Ant-plant mutalism: the Argentine ant (Iridomyrmex Humilis) and myrmecochorous Proteaceae. Ecology, 65, 10311037.CrossRefGoogle Scholar
Bono, J. M. and Heithaus, E. R. (2002). Population consequences of changes in ant-seed mutualism in Sanguinaria canadensis. Insectes Sociaux, 49, 320325.Google Scholar
Boyd, R. (2001). Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). American Journal of Botany, 88, 234241.Google Scholar
Brew, C. R., O’Dowd, D. J. and Rae, I. D. (1989). Seed dispersal by ants: behaviour-releasing compounds in elaiosomes. Oecologia, 80, 490497.Google Scholar
Bronstein, J. L., Alarcon, R. and Geber, M. (2006). The evolution of plant-insect mutualisms. New Phytologist, 172, 412428.CrossRefGoogle ScholarPubMed
Brook, B. W., Sodhi, N. S. and Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453460.CrossRefGoogle ScholarPubMed
Brown, D. G., Johnson, K. M., Loveland, T. R. and Theobald, D. M. (2005). Rural land-use trends in the conterminous United States. Ecological Applications, 15, 18511863.Google Scholar
Brunet, J. and von Oheimb, G. (1998). Migration of vascular plants to secondary woodlands in southern Sweden. Journal of Ecology, 86, 429438.CrossRefGoogle Scholar
Bulow-Olsen, A. (1984). Diplochory in Viola: a possible relation between seed dispersal and soil seed bank. American Midland Naturalist, 112, 251260.Google Scholar
Cain, M. L., Damman, H. and Muir, A. (1998). Seed dispersal and the Holocene migration of woodland herbs. Ecological Monographs, 68, 325347.CrossRefGoogle Scholar
Canner, J. E., Dunn, R. R., Giladi, I. and Gross, K. (2012). Redispersal of seeds by a keystone ant augments the spread of common wildflowers. Acta Oecologica, 40, 3139.CrossRefGoogle Scholar
Carney, S. E., Byerley, M. B. and Holway, D. A. (2003). Invasive Argentine ants (Linepithema humile) do not replace native ants as seed dispersers of Dendromecon rigida (Papaveraceae) in California, USA. Oecologia, 135, 576582.Google Scholar
Caut, S., Jowers, M. J., Cerda, X. and Boulay, R. (2013). Questioning the mutual benefits of myrmecochory: a stable isotope-based experimental approach. Ecological Entomology, 38, 390399.Google Scholar
Chen, Y., Hansen, L. D. and Brown, J. J. (2002). Nesting sites of the carpenter ant, Camponotus vicinus (Mayr) (Hymenoptera: Formicidae) in northern Idaho. Environmental Entomology, 31, 10371042.Google Scholar
Christian, C. E. (2001). Consequences of biological invasions reveal importance of mutualism for plant communities. Nature, 413, 576582.Google Scholar
Clark, R. E. and King, J. R. (2012). The ant, Aphaenogaster picea, benefits from plant elaiosomes when insect prey is scarce. Environmental Entomology, 41, 14051408.Google Scholar
Dahlgren, J. P., von Zeipel, H. and Ehrlen, J. (2007). Variation in vegetative and flowering phenology in a forest herb caused by environmental heterogeneity. American Journal of Botany, 94, 15701576.Google Scholar
De Marco, B. and Cognato, A. I. (2016). A multiple gene phylogeny reveals polyphyly among eastern North American Aphaenogaster species (Hymenoptera: Formicidae). Zoologica Scripta, DOI: 10.1111/zsc.12168.CrossRefGoogle Scholar
Diamond, S. E., Nichols, L. M., McCoy, N., Hirsch, C., Pelini, S. L., Sanders, N. J., Ellison, A. M., Gotelli, N. J. and Dunn, R. R. (2012). A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology, 93, 23052312.Google Scholar
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. and Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology & Evolution, 22, 489496.Google Scholar
Drummond, M. A. and Loveland, T. R. (2010). Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience, 60, 286298.Google Scholar
Duffy, D. C. and Meier, A. J. (1992). Do Appalachian herbaceous understories ever recover from clearcutting? Conservation Biology, 6, 196201.Google Scholar
Eguchi, K. (2004). A survey on seed predation by omnivorous ants in the warm-temperate zone of Japan (Insecta, Hymnoptera, Formicidae). New Entomologist, 53, 718.Google Scholar
Fellers, J. H. (1989). Daily and seasonal activity in woodland ants. Oecologia, 78, 6976.Google Scholar
Fischer, R. C., Richter, A., Hadacek, F. and Mayer, V. (2008). Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants. Oecologia, 155, 539547.Google Scholar
Flinn, K. M. and Vellend, M. (2005). Recovery of forest plant communities in post-agricultural landscapes. Frontiers in Ecology and the Environment, 3, 243250.Google Scholar
Ford, W. M., Odom, R. H., Hale, P. E. and Chapman, B. R. (2000). Stand-age, stand characteristics, and landform effects on understory herbaceous communities in southern Appalachian cove-hardwoods. Biological Conservation, 93, 237246.CrossRefGoogle Scholar
Gammans, N., Bullock, J. J. and Schonrogge, K. (2005). Ant benefits in a seed dispersal mutualism. Oecologia, 146, 4349.Google Scholar
Garnas, J. (2004). European fire ants on Mount Desert Island, Maine: population structure, mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: Formicidae). Ecology and Environmental Sciences. Orono, Maine: University of Maine.Google Scholar
Giladi, I. (2006). Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos, 112, 481492.Google Scholar
Gilliam, F. S. (2002). Effects of harvesting on herbaceous layer diversity of a central Appalachian hardwood forest in West Virginia, USA. Forest Ecology and Management, 155, 3343.Google Scholar
Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845858.Google Scholar
Gomez, C. and Espadaler, X. (2013). An update of the world survey of myrmecochorous dispersal distances. Ecography, 36, 11931201.Google Scholar
Gomez, C. and Oliveras, J. (2003). Can the Argentine ant (Linepithema humile Mayr) replace native ants in myrmecochory? Acta Oecologia, 24, 4753.Google Scholar
Gorb, E. and Gorb, S. (2000). Effects of seed aggregation on the removal rates of elaiosome-bearing Chelidonium majus and Viola odorata seeds carried by Formica polyctena ants. Ecological Research, 15, 187192.Google Scholar
Gorb, E. and Gorb, S. (2003). Seed Dispersal by Ants in a Deciduous Forest Ecosystem. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Gove, A. D., Majer, J. D. and Dunn, R. R. (2007). A keystone ant species promotes seed dispersal in “diffuse” mutualism. Oecologia, 153, 687697.CrossRefGoogle ScholarPubMed
Groden, E., Drummond, F. A., Garnas, J. and Franceour, A. (2005). Distribution of an invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in Maine. Journal of Economic Entomology, 98, 17741784.Google Scholar
Guenard, B. and Dunn, R. R. (2010). A new (old), invasive ant in the hardwood forests of eastern North America and its potentially widespread impacts. PLoS ONE, 5, e11614.Google Scholar
Handel, S. N. (1976). Ecology of Carex pedunculata (Cyperaceae), a new North American myrmecochore. American Journal of Botany, 63, 10711079.Google Scholar
Handel, S. N. and Beattie, A. J. (1990). Seed dispersal by ants. Scientific American, 263, 7683.Google Scholar
Handel, S. N., Fisch, S. B. and Schatz, G. E. (1981). Ants disperse a majority of herbs in a mesic forest community in New-York state. Bulletin of the Torrey Botanical Club, 108, 430437.Google Scholar
Harrelson, S. M. and Matlack, G. R. (2006). Influence of stand age and physical environment on the herb composition of second-growth forest, Strouds Run, Ohio, USA. Journal of Biogeography, 33, 11391149.Google Scholar
Heithaus, E. R. and Humes, M. (2003). Variation in communities of seed-dispersing ants in habitats with different disturbance in Knox County, Ohio. Ohio Journal of Science, 103, 8997.Google Scholar
Hellmann, J. J., Byers, J. E., Bierwagen, B. G. and Dukes, J. S. (2008). Five potential consequences of climate change for invasive species. Conservation Biology, 22, 534543.Google Scholar
Hölldobler, B. and Wilson, E. O. (1990). The Ants. Cambridge, MA: Belknap.Google Scholar
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. and Case, T. J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33, 181233.Google Scholar
Jackson, B. C., Pitillo, J. D., Allen, H. L., Wentworth, T. R., Bullock, B. P. and Loftis, D. L. (2009). Species diversity and composition in old growth and second growth rich coves of the Southern Appalachian Mountains. Castanea, 74, 2738.Google Scholar
Jacquemyn, H. and Brys, R. (2008). Effects of stand age on the demography of a temperate forest herb in post-agricultural forests. Ecology, 89, 34803489.Google Scholar
Jules, E. S. and Rathcke, B. J. (1999). Mechanisms of reduced Trillium recruitment along edges of old-growth forest. Conservation Biology, 13, 784793.Google Scholar
Kalisz, S., Hanzawa, F. M., Tonsor, S. J., Thiede, D. A. and Voigt, S. (1999). Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology, 80, 26202634.CrossRefGoogle Scholar
Keller, L. and Passera, L. (1989). Size and fat-content of gynes in relation to the mode of colony founding in ants (Hymenoptera; Formicidae). Oecologia, 80, 236240.Google Scholar
King, J. R. and Tschinkel, W. R. (2008). Experimental evidance that human impacts drive fire ant invasions and ecological change. Proceedings of the National Academy of Sciences, 105, 2033920343.Google Scholar
King, J. R. and Tschinkel, W. R. (2013). Experimental evidence for weak effects of fire ants in a naturally invaded pine-savanna ecosystem. Ecological Entomology, 38, 6875.CrossRefGoogle Scholar
King, J. R. and Tschinkel, W. R. (2016). Experimental evidence that dispersal drives ant community assembly in human-altered ecosystems. Ecology, 97, 236249.Google Scholar
King, J. R., Tschinkel, W. R. and Ross, K. G. (2009). A case study of human exacerbation of the invasive species problem: transport and establishment of polygyne fire ants in Tallahassee, Florida, USA. Biological Invasions, 11, 373377.Google Scholar
King, J. R., WarrenII, R. J. and Bradford, M. A. (2013). Social insects dominate eastern US temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS ONE, 8, e75843.Google Scholar
Kjellsson, G. (1991). Seed fate in an ant-dispersed sedge, Carex pilulifera L.: recruitment and seedling survival in tests of models for spatial dispersion. Oecologia, 88, 435443.CrossRefGoogle Scholar
Kuriachan, I. and Vinson, S. B. (2000). A queen’s worker attractiveness influences her movement in polygynous colonies of the red imported fire ant (Hymenoptera: Formicidae) in response to adverse temperature Environmental Entomology, 29, 943949.CrossRefGoogle Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. and Dunn, R. B. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4, e5480.Google Scholar
Lessard, J. P., Sackett, T. E., Reynolds, W. N., Fowler, D. A. and Sanders, N. J. (2010). Determinants of the detrital arthropod community structure: effects of temperature and resources along an environmental gradient. Oikos, 120, 333343.Google Scholar
Lubertazzi, D. (2012). The biology and natural history of Aphaenogaster rudis. Psyche, 2012, 752815.Google Scholar
Mantyka-Pringle, C. S., Martin, T. G. and Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology, 18, 12391252.Google Scholar
Marshall, D. L., Beattie, A. J. and Bollenbacher, W. E. (1979). Evidence for diglycerides as attractants in an ant-seed interaction. Journal of Chemical Ecology, 5, 335344.Google Scholar
Marussich, W. A. (2006). Testing myrmecochory from the ant’s perspective: the effects of Datura wrightii and D. discolor on queen survival and brood production in Pogonomyrmex californicus. Insectes Sociaux, 53, 403411.Google Scholar
Matlack, G. R. (1993). Microenvironment variation within and among forest edge sites in the Eastern United-States. Biological Conservation, 66, 185194.CrossRefGoogle Scholar
Matlack, G. R. (1994a). Plant-species migration in a mixed-history forest landscape in Eastern North-America. Ecology, 75, 14911502.Google Scholar
Matlack, G.R. (1994b). Vegetation dynamics of the forest edges-trends in space and successional time. Journal of Ecology, 82, 113123.Google Scholar
McGlynn, T. P. (1999). Non-native ants are smaller than related native ants. American Naturalist, 6, 690699.Google Scholar
McLachlan, S. M. and Bazely, D. R. (2001). Recovery patterns of understory herbs and their use as indicators of deciduous forest regeneration. Conservation Biology, 15, 98110.Google Scholar
Meier, A. J., Bratton, S. P. and Duffy, D. C. (1995). Possible ecological mechanisms for loss of vernal-herb diversity in logged eastern deciduous forests. Ecological Applications, 5, 935946.Google Scholar
Mitchell, C. E., Turner, M. G. and Pearson, S. M. (2002). Effects of historical land use and forest patch size on myrmecochores and ant communities. Ecological Applications, 12, 13641377.Google Scholar
Morales, M. A. and Heithaus, E. R. (1998). Food from seed-dispersal mutualism shifts sex ratios in colonies of the ant Aphaenogaster rudis. Ecology, 79, 734739.Google Scholar
Myers, J. A., Vellend, M., Gardescu, S. and Marks, P. L. (2004). Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion and migration of plants in eastern North America. Oecologia, 139, 3544.Google Scholar
Nelder, M. P., Paysen, E. S., Zungoli, P. A. and Benson, E. P. (2006). Emergence of the introduced ant Pachycondyla chinensis (Formicidae: Ponerinae) as a public health threat in the southeastern United States. Journal of Medical Entomology, 43, 10941098.Google Scholar
Ness, J. H. (2004). Forest edges and fire ants alter the seed shadow of an ant-dispersed plant. Oecologia, 138, 228454.Google Scholar
Ness, J. H. and Bronstein, J. L. (2004). The effects of invasive ants on the prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Ness, J. H. and Morin, D. F. (2008). Forest edges and landscape history shape interactions between plants, seed-dispersing ants and seed predators. Biological Conservation, 141, 838847.Google Scholar
Ness, J. H., Morin, D. F. and Giladi, I. (2009). Uncommon specialization in a mutualism between a temperate herbaceous plant guild and an ant: Are Aphaenogaster ants keystone mutualists? Oikos, 12, 17931804.CrossRefGoogle Scholar
Ohnishi, Y., Suzuki, N., Katayama, N. and Teranishi, S. (2008). Seasonally different modes of seed dispersal in the prostrate annual, Chamaesyce maculata (L.) Small (Euphorbiaceae), with multiple overlapping generations. Ecological Research, 23, 299305.Google Scholar
Pelini, S. L., Boudreau, M., McCoy, N., Ellison, A. M., Gotelli, N. J., Sanders, N. J. and Dunn, R. R. (2011). Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2, 112.CrossRefGoogle Scholar
Pelini, S. L., Diamond, S. E., MacLean, H. J., Ellison, A. M., Gotelli, N. J., Sanders, N. J. and Dunn, R. R. (2012). Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2, 30093015.Google Scholar
Peterson, C. J. and Campbell, J. E. (1993). Microsite differences and temporal change in plant communities of treefall pits and mounds in an old-growth forests. Bulletin of the Torrey Botanical Club, 120, 451460.CrossRefGoogle Scholar
Pfeiffer, M., Huttenlocher, H. and Ayasse, M. (2010). Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants. Functional Ecology, 24, 545555.Google Scholar
Porter, S. D. and Tschinkel, W. R. (1993). Fire ant thermal preferences: behavioral control of growth and metabolism. Behavioral Ecology and Sociobiology, 32, 321329.Google Scholar
Prior, K. M., Robinson, J. M., Meadly Dunphy, S. A. and Frederickson, M. E. (2015). Mutualism between co-introduced species facilitates invasion and alters plant community structure. Proceedings of the Royal Society B-Biological Sciences, 282.Google Scholar
Pudlo, R. J., Beattie, A. J. and Culver, D. C. (1980). Population consequences of changes in ant-seed mutualism in Sanguinaria canadensis. Oecologia, 146, 3237.Google Scholar
Rathcke, B. and Lacey, E.P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179214.Google Scholar
Rice, E. S. and Silverman, J. (2013). Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis. PLoS ONE, 8, 856281.Google Scholar
Rico-Gray, V. and Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Rodriguez-Cabal, M. A., Stuble, K. L., Guenard, B., Dunn, R. R. and Sanders, N. J. (2012). Disruption of ant-seed dispersal mutualisms by the invasive Asian needle ant (Pachycondyla chinensis). Biological Invasions, 14, 557565.Google Scholar
Rodriguez-Cabal, M. A., Stuble, K. L., Nunez, M. A. and Sanders, N. J. (2009). Quantitative analysis of the effects of the exotic Argentine ant on seed-dispersal mutualisms. Biology Letters, 5, 499502.CrossRefGoogle ScholarPubMed
Rowles, A. D. and O’Dowd, D. J. (2009). New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion. Oecologia, 158, 709716.Google Scholar
Rowles, A. D. and Silverman, J. (2010). Argentine ant invasion associated with loblolly pines in the Southeastern United States: minimal impacts but seasonally sustained. Environmental Entomology, 39, 11411150.Google Scholar
Sanders, N. J., Gotelli, N. J., Heller, N. E. and Gordon, D. M. (2003). Community disassembly by an invasive species. Proceedings of the National Academy of Sciences, 100, 24742477.Google Scholar
Sanders, N. J., Lessard, J. P., Fitzpatrick, M. C. and Dunn, R. R. (2007). Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16, 640649.Google Scholar
Servigne, P. and Detrain, C. (2008). Ant-seed interactions: combined effects of ant and plant species on seed removal patterns. Insectes Sociaux, 55, 220230.Google Scholar
Singer, M. C. and Parmesan, C. (2010). Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Proceedings of the Royal Society B-Biological Sciences, 365, 31613176.Google Scholar
Sorrells, J. S. and WarrenII, R. J. (2011). Ant-dispersed herb colonization lags behind forest re-establishment. Journal of the Torrey Botanical Society, 138, 7784.Google Scholar
Staudt, A., Leidner, A. K., Howard, J., Brauman, K. A., Dukes, J. S., Hansen, L. J., Paukert, C., Sabo, J. and Solorzano, L. A. (2013). The added complications of climate change: understanding and managing biodiversity and ecosystems. Frontiers in Ecology and the Environment, 11, 494501.Google Scholar
Stuble, K. L., Kirkman, L. K. and Carroll, C. R. (2010). Are red imported fire ants facilitators of native seed dispersal? Biological Invasions, 12, 16611669.Google Scholar
Stuble, K. L., Patterson, C. M., Rodriguez-Cabal, M. A., Ribbons, R. R., Dunn, R. R. and Sanders, N. J. (2014). Ant-mediated seed dispersal in a warmed world. PeerJ, 2, e286.Google Scholar
Stuble, K. L., Pelini, S. L., Diamon, S. E., Fowler, D. A., Dunn, R. R. and Sanders, N. J. (2013). Foraging by forest ants under experimental warming: a test at two sites. Ecology and Evolution, 3, 482491.CrossRefGoogle Scholar
Suarez, A. V., Bolger, D. T. and Case, T. J. (1998). Effects of fragmentation and invasion on native ant communities in a coastal Southern California. Ecology, 79, 20412056.Google Scholar
Talbot, M. (1966). Flights of the ant Aphaenogaster treatae. Kansas Entomological Society, 39, 6777.Google Scholar
Theobald, D. M. (2005). Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecology and Society, 10, 32.Google Scholar
Turner, K. M. and Frederickson, M. E. (2013). Signals can trump rewards in attracting seed-dispersing ants. PLoS ONE, 8, e71871.Google Scholar
Urban, M. C., Tewksbury, J. J. and Sheldon, K. S. (2012). On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B-Biological Sciences, 279, 20722080.Google Scholar
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O. and Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389395.Google Scholar
Warren II, R. J., Bahn, V. and Bradford, M. A. (2011a). Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biology, 17, 24442454.Google Scholar
Warren II, R. J. and Bradford, M. A. (2013). Mutualism fails when climate response differs between interacting species. Global Change Biology, 20, 466474.Google Scholar
Warren II, R . J. and Chick, L. (2013). Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biology, 19, 20822088.Google Scholar
Warren II, R. J. and Giladi, I. (2014). Ant-mediated seed dispersal: a few ant species (Hymenoptera: Formicidae) benefit many plants. Myrmecological News, 20, 129140.Google Scholar
Warren II, R. J., Giladi, I. and Bradford, M.A. (2010). Ant-mediated seed dispersal does not facilitate niche expansion. Journal of Ecology, 98, 11781185.Google Scholar
Warren II, R. J., Giladi, I. and Bradford, M.A. (2012). Environmental heterogeneity and interspecific interactions influence occupancy be key seed-dispersing ants. Environmental Entomology, 41, 463468.Google Scholar
Warren II, R.J., Giladi, I. and Bradford, M.A. (2014). Competition as a mechanism structuring mutualisms. Journal of Ecology, 102, 486495.Google Scholar
Warren II, R. J., McAfee, P. and Bahn, V. (2011b). Ecological differentiation among key plant mutualists from a cryptic ant guild. Insectes Sociaux, 58, 505512.Google Scholar
Warren II, R. J., McMillan, A., King, J. R., Chick, L. and Bradford, M. A. (2015a). Forest invader replaces predation but not dispersal services by a keystone species. Biological Invasions, 23, 31533162.Google Scholar
Warren II, R. J., Pearson, S., Henry, S., Rossouw, K., Love, J.P., Olejniczak, M., Elliott, K. and Bradford, M.A. (2015b). Cryptic indirect effects of exurban edges on a woodland community. Ecosphere, 6, 218.Google Scholar
Whigham, D. E. (2004). Ecology of woodland herbs in temperate deciduous forests. Annual Review of Ecology Evolution and Systematics, 35, 583621.Google Scholar
Wike, L., Martin, F. D., Paller, M. H. and Nelson, E. A. (2010). Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health. Journal of Insect Science, 10, 116.Google Scholar
Wittman, S. E., Sanders, N. J., Ellison, A. M., Jules, E. S., Ratchford, J. S. and Gotelli, N. J. (2010). Species interactions and thermal constraints on ant community structure. Oikos, 119, 551559.Google Scholar
Zelikova, T. J., Dunn, R. R. and Sanders, N. J. (2008). Variation in seed dispersal along an elevational gradient in Great Smoky Mountains National Park. Acta Oecologica, 34, 155162.Google Scholar
Zelikova, T. J., Sanders, D. and Dunn, R. R. (2011). The mixed effects of experimental ant removal on seedling distribution, belowground invertebrates, and soil nutrients. Ecosphere, 2, 114.Google Scholar
Zettler, J. A., Spira, T. P. and Allen, C. R. (2001). Ant-seed mutualisms: can red imported fire ants source the relationship? Biological Conservation, 101, 249253.Google Scholar
Zhou, H., Chen, J. and Chen, F. (2007). Ant-mediated seed dispersal contributes to the local spatial pattern and genetic structure of Globba lancangensis (Zingiberaceae). Journal of Heredity, 98, 317324.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×