Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T17:54:15.368Z Has data issue: false hasContentIssue false

Part VI - Perspectives

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 391 - 418
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aguirre, A., Coates, R., Cumplido-Barragán, G., Campos-Villanueva, A. and Díaz-Castelazo, C. (2013) Morphological characterization of extrafloral nectaries and associated ants in tropical vegetation of Los Tuxtlas, Mexico. Flora, 208, 147156.Google Scholar
Alves-Silva, E., Baronio, G. J., Torezan-Silingardi, H. M. and Del-Claro, K. (2013) Foraging behavior of Brachygastra lecheguana (Hymenoptera: Vespidae) on Banisteriopsis malifolia (Malpighiaceae): extrafloral nectar consumption and herbivore predation in a tending ant system. Entomological Science, 16, 162169.Google Scholar
Alves-Silva, E. and Del-Claro, K. (2013) Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions. Naturwissenschaften, 100, 525532.CrossRefGoogle ScholarPubMed
Barrett, L. G. and Heil, M. (2012) Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends in Plant Science, 17, 282292.CrossRefGoogle ScholarPubMed
Beach, R. M., Todd, J. W. and Baker, S. H. (1985) Nectaried and nectariless cotton cultivars as nectar sources for the adult soybean looper. Journal of Entomological Science, 20, 233236.CrossRefGoogle Scholar
Bentley, B. L. (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics, 8, 407427.Google Scholar
Bentley, B. L. (1976) Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology, 57, 815820.Google Scholar
Bizerril, M. X. A. and Vieira, E. M. (2002) Azteca ants as antiherbivore agents of Tococa formicaria (Melastomataceae) in Brazilian Cerrado. Studies on Neotropical Fauna and Environment, 37, 145149.Google Scholar
Blattner, F. R., Weising, K., Bänfer, G., Maschwitz, U. and Fiala, B. (2001) Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). Molecular Phylogenetics and Evolution, 19, 331344.CrossRefGoogle ScholarPubMed
Bleil, R., Bluethgen, N. and Junker, R. R. (2011) Ant-plant mutualism in Hawai’i? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pacific Science, 65, 291300.Google Scholar
Blüthgen, N. and Wesenberg, J. (2001) Ants induce domatia in a rain forest tree (Vochysia vismiaefolia). Biotropica, 33, 637642.Google Scholar
Bronstein, J. L. (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica, 30, 150161.CrossRefGoogle Scholar
Brouat, C., Garcia, N., Andary, C. and McKey, D. (2001) Plant lock and ant key: pairwise coevolution of an exclusion filter in an ant-plant mutualism. Proceedings of the Royal Society of London, Series B, 268, 21312141.Google Scholar
Brown, W. L. J. (1960) Ants, acacias, and browsing mammals. Ecology, 41, 587592.CrossRefGoogle Scholar
Carrillo, J., McDermott, D. and Siemann, E. (2014) Loss of specificity: native but not invasive populations of Triadica sebifera vary in tolerance to different herbivores. Oecologia, 174, 863871.Google Scholar
Chamberlain, S. A. and Holland, J. N. (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology, 90, 23842392.Google Scholar
Chomicki, G., Staedler, M., Schönenberger, Y., , J. and Renner, S. S. (2016) Partner choice through concealed floral sugar rewards evolved with the specialization of ant-plant mutualisms. New Phytologist, 211, 13581370.CrossRefGoogle ScholarPubMed
Darwin, F. (1876) On the glandular bodies on Acacia sphaerocephala and Cecropia peltata serving as food for ants. With an appendix on the nectar-glands of the common brake fern, Pteris Aquilina. Botanical Journal of the Linnean Society of London, 15, 398409.CrossRefGoogle Scholar
Davidson, D. W. and McKey, D. (1993) Ant-plant symbioses: stalking the Chuyachaqui. Trends in Ecology and Evolution, 8, 326332.Google Scholar
Escalante-Perez, M. and Heil, M. (2012) The production and protection of Nectars. In Lüttge, U. and Beyschlag, W., eds. Progress in Botany, Vol. 74. Heidelberg: Springer, pp. 239261.Google Scholar
Escalante-Perez, M., Jaborsky, M., Lautner, S., Fromm, J., Muller, T. et al. (2012) Poplar extrafloral nectaries: two types, two strategies of indirect defenses against herbivores. Plant Physiology, 159, 11761191.Google Scholar
Fagundes, R., Anjos, D. V., Carvalho, R. and Del-Claro, K. (2015) Availability of food and nesting-sites as regulatory mechanisms for the recovery of ant diversity after fire disturbance. Sociobiology, 62, 19.Google Scholar
Federle, W., Fiala, B., Zizka, G. and Maschwitz, U. (2001) Incident daylight as orientation cue for hole-boring ants: prostomata in Macaranga ant-plants. Insectes Sociaux, 48, 165177.Google Scholar
Federle, W., Maschwitz, U. and Holldobler, B. (2002) Pruning of host plant neighbours as defence against enemy ant invasions: Crematogaster ant partners of Macaranga protected by ‘wax barriers’ prune less than their congeners. Oecologia, 132, 264270.Google Scholar
Feeny, P. (1976) Plant apparency and chemical defense. Recent Advances in Phytochemistry, 10, 140.Google Scholar
Ferguson, B. G., Boucher, D. H. and Maribel Pizzi, C. R. (1995) Recruitment and decay of a pulse of Cecropia in Nicaraguan rain forest damaged by hurricane Joan: relation to mutualism with Azteca ants. Biotropica, 27, 455460.Google Scholar
Ferreira, J. A. M., Cunha, D. F. S., Pallini, A., Sabelis, M. W. and Janssen, A. (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 36, 435441.Google Scholar
Fiala, B., Jakob, A., Maschwitz, U. and Linsenmair, K. E. (1999) Diversity, evolutionary specialisation and geographic distribution of a mutualistic ant-plant complex: Macaranga and Crematogaster in South East Asia. Biological Journal of the Linnean Society, 66, 305331.Google Scholar
Fiala, B. and Linsenmair, K. E. (1995) Distribution and abundance of plants with extrafloral nectaries in the woody flora of a lowland primary forest in Malaysia. Biodiversity and Conservation, 4, 165182.Google Scholar
Fiala, B. and Maschwitz, U. (1992a) Domatia as most important adaptions in the evolution of myrmecophytes in the paleotropical tree genus Macaranga (Euphorbiaceae). Plant Systematics and Evolution, 180, 5364.Google Scholar
Fiala, B. and Maschwitz, U. (1991) Extrafloral nectaries in the genus Macaranga (Euphorbiaceae) in Malaysia: comparative studies of their possible significance as predispositions for myrmecophytism. Biological Journal of the Linnean Society, 44, 287305.Google Scholar
Fiala, B. and Maschwitz, U. (1992b) Food bodies and their significance for obligate ant-association in the tree genus Macaranga (Euphorbiaceae). Botanical Journal of the Linnean Society, 110, 6175.CrossRefGoogle Scholar
Fiala, B. and Maschwitz, U. (1990) Studies on the south east asian ant-plant association Crematogaster borneensis/Macaranga: adaptations of the ant partner. Insectes Sociaux, 37, 212231.Google Scholar
Fischer, R. C., Richter, A., Wanek, W. and Mayer, V. (2002) Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia, 133, 186192.Google Scholar
Folgarait, P. J. and Davidson, D. W. (1995) Myrmecophytic Cecropia: antiherbivore defenses under different nutrient treatments. Oecologia, 104, 189206.Google Scholar
Freitas, L., Galetto, L., Bernardello, G. and Paoli, A. A. S. (2000) Ant exclusion and reproduction of Croton sarcopetalus (Euphorbiaceae). Flora, 195, 398402.Google Scholar
Géneau, C. E., Wäckers, F. L., Luka, H., Daniel, C. and Balmer, O. (2012) Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic and Applied Ecology, 13, 8593.CrossRefGoogle Scholar
Goheen, J. R. and Palmer, T. M. (2010) Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savanna. Current Biology, 20, 17661772.Google Scholar
González-Teuber, M. and Heil, M. (2015) Comparative anatomy and physiology of myrmecophytes: ecological and evolutionary perspectives. Research and Reports in Biodiversity Studies, 4, 2132.Google Scholar
González-Teuber, M. and Heil, M. (2009) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signaling and Behavior, 4, 809813.Google Scholar
González-Teuber, M., Kaltenpoth, M. and Boland, W. (2014) Mutualistic ants as an indirect defence against leaf pathogens. New Phytologist, 202, 640650.Google Scholar
Gras, P., Tscharntke, T., Maas, B., Tjoa, A., Hafsah, A. et al. (2016) How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology, 53, 953963.Google Scholar
Heil, M. (2015) Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology, 60, 213232.Google Scholar
Heil, M. (2008) Indirect defence via tritrophic interactions. New Phytologist, 178, 4161.Google Scholar
Heil, M. (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. Journal of Ecology, 92, 527536.Google Scholar
Heil, M. (2011) Nectar: generation, regulation and ecological functions. Trends in Plant Science, 16, 191200.Google Scholar
Heil, M. (2016) Nightshade wound secretion: the world’s simplest extrafloral nectar? Trends in Plant Science, 21, 637638.Google Scholar
Heil, M., Baumann, B., Krüger, R. and Linsenmair, K. E. (2004) Main nutrient compounds in food bodies of Mexican Acacia ant-plants. Chemoecology, 14, 4552.Google Scholar
Heil, M., Fiala, B., Boller, T. and Linsenmair, K. E. (1999) Reduced chitinase activities in ant plants of the genus Macaranga. Naturwissenschaften, 86, 146149.Google Scholar
Heil, M., Fiala, B., Linsenmair, K. E., Zotz, G., Menke, P. et al. (1997) Food body production in Macaranga triloba (Euphorbiaceae): a plant investment in anti-herbivore defence via mutualistic ant partners. Journal of Ecology, 85, 847861.Google Scholar
Heil, M., González-Teuber, M., Clement, L. W., Kautz, S., Verhaagh, M. et al. (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proceedings of the National Academy of Science USA, 106, 1809118096.Google Scholar
Heil, M., Greiner, S., Meimberg, H., Krüger, R., Noyer, J.-L. et al. (2004b) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature, 430, 205208.Google Scholar
Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W. et al. (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences of the USA, 98, 10831088.Google Scholar
Heil, M. and McKey, D. (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Evolution, and Systematics, 34, 425453.Google Scholar
Herms, D. A. and Mattson, W. J. (1992) The dilemma of plants: to grow or to defend. The Quarterly Review of Biology, 67, 283335.CrossRefGoogle Scholar
Huxley, C. R. (1978) The ant-plants Myrmecodia and Hydnophytum (Rubiaceae), and relationships between their morphology, ant occupants, physiology and ecology. New Phytologist, 80, 231268.Google Scholar
Janzen, D. H. (1969) Allelopathy by myrmecophytes: the ant Azteca as an allelopathic agent of Cecropia. Ecology, 50, 147153.Google Scholar
Janzen, D. H. (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution, 20, 249275.Google Scholar
Janzen, D. H. (1967) Fire, vegetation structure, and the ant x Acacia interaction in Central America. Ecology, 48, 2635.Google Scholar
Janzen, D. H. (1985) On ecological fitting. Oikos, 45, 308310.Google Scholar
Janzen, D. H. (1972) Protection of Barteria (Passifloraceae) by Pachysima ants (Pseudomyrmecinae) in a Nigerian rain forest. Ecology, 53, 885892.Google Scholar
Janzen, D. H. (1974) Swollen-Thorn Acacias of Central America: Smithsonian Contributions to Botany, Vol. 13. Washington, DC: Smithsonian Institution Press.Google Scholar
Jones, I. M., Koptur, S. and von Wettberg, E. (2016) The use of extrafloral nectar in pest management: overcoming context dependence. Journal of Applied Ecology, 54, 489–499.Google Scholar
Jones, M. E. and Paine, T. D. (2012) Ants impact sawfly oviposition on bracken fern in southern California. Arthropod-Plant Interactions, 6, 283287.Google Scholar
Kato, H., Yamane, S. and Phengklai, C. (2004) Ant-colonized domatia on fruits of Mucuna interrupta (Leguminosae). Journal of Plant Research, 117, 319321.CrossRefGoogle ScholarPubMed
Keeler, K. H. (1979) Distribution of plants with extrafloral nectaries and ants at two different elevations in Jamaica. Biotropica, 11, 152154.Google Scholar
Keeler, K. H. (1980) Distribution of plants with extrafloral nectaries in temperate communities. The American Midland Naturalist, 104, 274279.Google Scholar
Koptur, S., Palacios-Rios, M., Diaz-Castelazo, C., Mackay, W. P. and Rico-Gray, V. (2013) Nectar secretion on fern fronds associated with lower levels of herbivore damage: field experiments with a widespread epiphyte of Mexican cloud forest remnants. Annals of Botany, 111, 12771283.Google Scholar
Koptur, S., Rico-Gray, V. and Palacios-Rios, M. (1998) Ant protection of the nectaried fern Polypodium plebeium in Central Mexico. American Journal of Botany, 85, 736739.Google Scholar
Koptur, S., William, P. and Olive, Z. (2010) Ants and plants with extrafloral nectaries in fire successional habitats on Andros (Bahamas). Florida Entomologist, 93, 8999.Google Scholar
Koricheva, J. and Romero, G. Q. (2012) You get what you pay for: reward-specific trade-offs among direct and ant-mediated defences in plants. Biology Letters, 8, 628630.Google Scholar
Lach, L. (2003) Invasive ants: unwanted partners in ant-plant interactions? Annals of the Missouri Botanical Garden, 90, 91108.Google Scholar
Lach, L., Hobbs, R. J. and Majer, J. D. (2009) Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Population Ecology, 51, 237243.Google Scholar
Lach, L. and Hoffmann, B. D. (2011) Are invasive ants better plant-defense mutualists? A comparison of foliage patrolling and herbivory in sites with invasive yellow crazy ants and native weaver ants. Oikos, 120, 916.Google Scholar
Lach, L., Tillberg, C. V. and Suarez, A. V. (2010) Contrasting effects of an invasive ant on a native and an invasive plant. Biological Invasions, 12, 31233133.Google Scholar
Leal, L. C., Andersen, A. N. and Leal, I. R. (2015) Disturbance winners or losers? Plants bearing extrafloral nectaries in Brazilian Caatinga. Biotropica, 47, 468474.CrossRefGoogle Scholar
Lin, I. W., Sosso, D., Chen, L.-Q., Gase, K., Kim, S.-G. et al. (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508, 546549.Google Scholar
Longino, J. T. (1989) Geographic variation and community structure in an an-plant mutualism: Azteca and Cecropia in Costa Rica. Biotropica, 21, 126132.CrossRefGoogle Scholar
Lortzing, T., Calf, O. W., Böhlke, M., Schwachtje, J., Kopka, J. et al. (2016) Extrafloral nectar secretion from wounds of Solanum dulcamara. Nature Plants, 2, Article number: 16056, doi:10.1038/nplants.2016.56.CrossRefGoogle Scholar
Marazzi, B., Bronstein, J. and Koptur, S. (2013) The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges. Annals of Botany, 111, 12431250.Google Scholar
Marazzi, B., Conti, E., Sanderson, M. J., McMahon, M. M. and Bronstein, J. L. (2013) Diversity and evolution of a trait mediating ant-plant interactions: insights from extrafloral nectaries in Senna (Leguminosae). Annals of Botany, 111, 12631275.Google Scholar
Marazzi, B. and Sanderson, M. J. (2010) Large-scale patterns of diverstfication in the widspread legume genus Senna and evolutionary role of extrafloral nectaries. Evolution, 64, 35703592.CrossRefGoogle Scholar
Mathews, C. R., Bottrell, D. G. and Brown, M. W. (2009) Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense. Ecological Applications, 19, 722730.Google Scholar
Mathews, C. R., Brown, M. W. and Bottrell, D. G. (2007) Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae). Environmental Entomology, 36, 383389.Google Scholar
Mathur, V., Wagenaar, R., Caissard, J.-C., Reddy, A. S., Vet, L. E. M. et al. (2013) A novel indirect defence in Brassicaceae: Structure and function of extrafloral nectaries in Brassica juncea. Plant, Cell & Environment, 36, 528541.CrossRefGoogle ScholarPubMed
Melo, Y., Machado, S. R. and Alves, M. (2010) Anatomy of extrafloral nectaries in Fabaceae from dry-seasonal forest in Brazil. Botanical Journal of the Linnean Society, 163, 8798.Google Scholar
Millán-Cañongo, C., Orona-Tamayo, D. and Heil, M. (2014) Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis. Journal of Chemical Ecology, 40, 760769.Google Scholar
Moog, J., Feldhaar, H. and Maschwitz, U. (2002) On the caulinary domatia of the SE-Asian ant-plant Zanthoxylum myriacanthum Wall. ex Hook. f. (Rutaceae) their influence on branch statics, and the protection against herbivory. Sociobiology, 40, 547574.Google Scholar
Ness, J. H. (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos, 113, 506514.Google Scholar
Ness, J. H. and Bronstein, J. L. (2004) The effects of invasive ants on prospective ant mutualists. Biological Invasions, 6, 445461.Google Scholar
Ness, J. H., Morales, M. A., Kenison, E., Leduc, E., Leipzig-Scott, P. et al. (2013) Reciprocally beneficial interactions between introduced plants and ants are induced by the presence of a third introduced species. Oikos, 122, 695704.Google Scholar
Ness, J. H., Morris, W. F. and Bronstein, J. L. (2009) For ant-protected plants, the best defense is a hungry offense. Ecology, 90, 28232831.Google Scholar
Oliveira, P. S. and Brandão, C. R. F. (1991) The ant community associated with extrafloral nectaries in the Brazilian cerrados. In Huxley, C. R. and Cutler, D. F., eds. Ant-plant interactions. Oxford: Oxford University Press, pp. 198212.Google Scholar
Olson, D. M. and Wäckers, F. L. (2007) Management of field margins to maximize multiple ecological services. Journal of Applied Ecology, 44, 1321.Google Scholar
Orona-Tamayo, D., Wielsch, N., Blanco-Labra, A., Svatos, A., Faría-Rodríguez, R. et al. (2013) Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock-key system to protect Acacia food bodies from exploitation. Molecular Ecology, 22, 40874100.Google Scholar
Palmer, T. M., Stanton, M. L. and Young, T. P. (2003) Competition and coexistence: Exploring mechanisms that restrict and maintain diversity within mutualist guilds. American Naturalist, 162, S63S79.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M. et al. (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science, 319, 192195.Google Scholar
Philpott, S. M. and Foster, P. F. (2005) Nest-site limitation in coffee agroecosystems: Artificial nests maintain diversity of arboreal ants. Ecological Applications, 15, 14781485.CrossRefGoogle Scholar
Piovia-Scott, J. (2011) The effect of disturbance on an ant-plant mutualism. Oecologia, 166, 411420.Google Scholar
Pringle, E. G., Akçay, E., Raab, T. K., Dirzo, R. and Gordon, D. M. (2013) Water stress strengthens mutualism among ants, trees, and scale insects. PLoS Biol, 11, e1001705.Google Scholar
Putz, F. E. and Holbrook, N. M. (1988) Further observations on the dissolution of mutualism between Cecropia and its ants: the Malaysian case. Oikos, 53, 121125.Google Scholar
Quek, S. P., Davies, S. J., Itino, T. and Pierce, N. E. (2004) Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution, 58, 554570.Google Scholar
Rickson, F. R. (1971) Glycogen plastids in Müllerian body cells of Cecropia peltata – a higher green plant. Science, 173, 344347.CrossRefGoogle ScholarPubMed
Rickson, F. R. and Risch, S. J. (1984) Anatomical and ultrastructural aspects of the ant-food cell of Piper cenocladum C.DC (Piperaceae). American Journal of Botany, 71, 12681274.Google Scholar
Riginos, C., Karande, M. A., Rubenstein, D. I. and Palmer, T. M. (2015) Disruption of a protective ant-plant mutualism by an invasive ant increases elephant damage to savanna trees. Ecology, 96, 654661.Google Scholar
Rocha, C. F. D. and Bergallo, H. G. (1992) Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant-plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachia. Oecologia, 91, 249252.Google Scholar
Romero, G. Q. and Koricheva, J. (2011) Contrasting cascade effects of carnivores on plant fitness: a meta-analysis. Journal of Animal Ecology, 80, 696704.Google Scholar
Rosumek, F. B., Silveira, F. A. O., Neves, F. D., Barbosa, N. P. D., Diniz, L. et al. (2009) Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160, 537549.Google Scholar
Rudgers, J. and Gardener, M. C. (2004) Extrafloral nectar as a resource mediating multispecies interactions. Ecology, 85, 14951502.Google Scholar
Ruhlmann, J. M., Kram, B. W. and Carter, C. J. (2010) CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. Journal of Experimental Botany, 61, 395404.Google Scholar
Savage, A. M. and Rudgers, J. A. (2013) Non-additive benefit or cost? Disentangling the indirect effects that occur when plants bearing extrafloral nectaries and honeydew-producing insects share exotic ant mutualists. Annals of Botany, 111, 12951307.Google Scholar
Savage, A. M. and Whitney, K. D. (2011) Trait-mediated indirect interactions in invasions: unique behavioral responses of an invasive ant to plant nectar. Ecosphere, 2, Article 106.Google Scholar
Schremmer, F. (1969) Extranuptiale Nektarien. Beobachtungen an Salix eleagnos Scop. und Pteridium aquilinum (L.) Kuhn. Plant Systematics and Evolution (Österr. Bot. Z.), 117, 205222.Google Scholar
Schupp, E. W. (1986) Atzeca protection of Cecropia: ant occupation benefits juvenile trees. Oecologia, 70, 379385.CrossRefGoogle ScholarPubMed
Schupp, E. W. and Feener, D. H. (1991) Phylogeny, life form, and habitat dependence of ant-defended plants in a Panamanian forest. In Huxley, C. R. and Cutler, D. F., eds. Ant-plant interactions. Oxford: Oxford University Press, pp. 175197.Google Scholar
Sobrinho, T. G., Schoereder, J. H., Rodrigues, L. L. and Collevatti, R. G. (2002) Ant visitation (Hymenoptera: Formicidae) to extrafloral nectaries increases seed set and seed viability in the tropical weed Triumfetta semitriloba. Sociobiology, 39, 353368.Google Scholar
Stapley, L. (1998) The interaction of thorns and symbiotic ants as an effective defence mechanism of swollen-thorn acacias. Oecologia, 115, 401405.CrossRefGoogle ScholarPubMed
Stenberg, J. A., Heil, M., Åhman, I. and Björkman, C. (2015) Optimizing crops for biocontrol of pests and disease. Trends in Plant Science, 20, 698712.Google Scholar
Tempel, A. S. (1983) Bracken fern (Pteridium aquilinum) and nectar-feeding ants: a nonmutualistic interaction. Ecology, 64, 14111422.Google Scholar
Trager, M. D., Bhotika, S., Hostetler, J. A., Andrade, G. V., Rodriguez-Cabal, M. A. et al. (2010) Benefits for plants in ant-plant protective mutualisms: a meta-analysis. Plos One, 5, e14308.Google Scholar
Traveset, A. and Richardson, D. M. (2014) Mutualistic interactions and biological invasions. Annual Review of Ecology, Evolution, and Systematics, 45, 89113.Google Scholar
Wang, Y., Carrillo, J., Siemann, E., Wheeler, G. S., Zhu, L. et al. (2013) Specificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree. Annals of Botany, 112, 751–756.Google Scholar
Ward, P. S. (1999) Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris- and Tachigali-inhabiting ants. Zoological Journal of the Linnean Society, 126, 451540.Google Scholar
Webber, B. L., Moog, J., Curtis, A. S. O. and Woodrow, I. E. (2007) The diversity of ant-plant interactions in the rainforest understorey tree, Ryparosa (Achariaceae): food bodies, domatia, prostomata and hemipteran trophobionts. Botanical Journal of the Linnean Society, 154, 353371.Google Scholar
Weber, M. G. and Agrawal, A. (2014) Defense mutualisms enhance plant diversification. Proceedings of the National Academy of Science USA, 111, 1644216447.Google Scholar
Weber, M. G. and Keeler, K. H. (2013) The phylogenetic distribution of extrafloral nectaries in plants. Annals of Botany, 111, 12511261.Google Scholar
White, R. A. and Turner, M. D. (2012) The anatomy and occurrence of foliar nectaries in Cyathea (Cyatheaceae). American Fern Journal, 102, 91113.Google Scholar
Young, T. P., Stubblefield, C. H. and Isbell, L. A. (1997) Ants on swollen-thorn acacias: species coexistence in a simple system. Oecologia, 109, 98107.Google Scholar
Yu, D. W. and Pierce, N. E. (1998) A castration parasite of an ant-plant mutualism. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 375382.Google Scholar
Yumoto, T. and Maruhashi, T. (1999) Pruning behavior and intercolony competition of Tetraponera (Pachysima) aethiops (Pseudomyrmecinae, Hymenoptera) in Barteria fistulosa in a tropical forest, Democratic Republic of Congo. Ecological Research, 14, 393404.Google Scholar

References

Aizen, M. A., Sabatino, M. & Tylianakis, J. M. (2012). Specialization and rarity predict non-random loss of interactions from mutualistic networks. Science, 335, 14861489.Google Scholar
Andersen, A. N., Hoffmann, B. D., Muller, W. J. & Griffiths, A. D. (2002). Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology, 39, 817.Google Scholar
Asian, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. (2013). Mutualism disruption threatens global plant diversity: a systematic review. PLoS ONE, 8, e66993.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S. et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 5157.Google Scholar
Bascompte, J. & Jordano, P. (2007). Plant-animal mutualistic networks; the architecture of biodiversity. Annual Review of Ecology, Evolution and Systematics, 38, 567593.Google Scholar
Beattie, A. J. & Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. West Virginia forests. Ecology, 62, 107119.Google Scholar
Bond, W. J. (1994). Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philosophical Transactions of the Royal Society B, 344, 8390.Google Scholar
Bronstein, J. L., Dieckmann, U. & Ferriere, R. (2004). Coevolutionary dynamics and the conservation of mutualisms. In Evolutionary Conservation Biology, ed. Fierriere, R., Dieckmann, U. and Couvet, D. Cambridge: Cambridge University Press, pp. 305326.Google Scholar
Cammeraat, L. H., Willott, S. J., Compton, S. G. & Incoll, L. D. (2002). The effect of ants’ nests on the physical, chemical and hydrological properties of a rangelend soil in semi-arid Spain. Geoderma, 105, 120.Google Scholar
Cribb, J. (2016). Surviving the 21st Century. New York: Springer International.Google Scholar
Culver, D. C. & Beattie, A. J. (1983). Effects of ant mounds on soil chemistry and vegetation patterns in Colorado. Ecology, 64, 485492.Google Scholar
Dauber, J., Bengtsson, J. & Lenoir, L. (2006). Evaluating effects of habitat loss and land-sue continuity on ant species richness in seminatural grassland remnants. Conservation Biology, 20, 11501160.Google Scholar
Davidson, D. W. (1997). The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society, 61, 153181.Google Scholar
Dunn, R. R. (2009). Coextinction: anecdotes, models and speculation. In Holocene Extinctions, Turvey, S. T. Oxford Scholarship Online, doi: 10.1093/acprof.oso/9780199535095.003.0008.Google Scholar
Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. (2009). The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society Series B, 276, 30373045.Google Scholar
Ehrlich, P. R. & Ehrlich, A. H. (2012). Can a collapse of global civilization be avoided? Proceedings of the Royal Society Series B, 280, 20122845.Google Scholar
Emmott, S. (2013). 10 Billion. London: Penguin Books.Google Scholar
Fitzroy, F. R. & Papyrakis, E. (2016). An Introduction to Climate Change Economics and Policy, 2nd ed. London: Routledge.Google Scholar
Folgarait, P. J. (1998). Ant biodiversity and its relationships to ecosystem functioning: a review. Biodiversity & Conservation, 7, 12211244.Google Scholar
Gordon, D. (1999). Ants at Work. New York: Free Press.Google Scholar
Guber, D. (2003). The Grassroots of a Green Revolution. Cambridge, MA: MIT Press.Google Scholar
Heil, M. & McKey, D. (2003). Protective ant-plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology. Evolution. and Systematics, 34, 425453.Google Scholar
Hooke, R. L. & Martin-Duque, J. F. (2012). Land transformation by humans: a review. Geological Society of America (GSA), 22, 410.Google Scholar
Johns, D. (2009). New Conservation Politics. Chichester: John Wiley & Sons.Google Scholar
Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. (2010). Mutualisms in a changing world. Ecology Letters, 13, 14591474.Google Scholar
Klein, A. M., Cunningham, S. A., Bos, M. & Steffan-Dewenter, I. (2008). Advances in pollination ecology from tropical plantation crops. Ecology, 89, 935943.Google Scholar
Knight, A. T., Bode, M., Fuller, R. A. et al. (2010). Barometer of life: more action, not more data. Science, 329, 141.Google Scholar
Kremen, C., Williams, N. M., Aizen, M. A., Gemmill-Herren, B. et al. (2007). Pollination and other ecosystem services by mobile organisms: a conceptual framework of land-use change. Ecology Letters, 10, 299314.Google Scholar
Lach, L., Parr, C. & Abbott, K. (2010). Ant Ecology. Oxford: Oxford University Press.Google Scholar
Laurence, W. F., Koster, H., Grooten, M. et al. (2012a). Making conservation research more relevant for conservation practitioners. Biological Conservation, 153, 164168.Google Scholar
Laurence, W. F., Useche, D., Rendeiro, J. et al. (2012b). Averting biodiversity collapse in tropical forest protected areas. Nature, 489, 290294.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. & Dunn, R. R. (2009a). Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. Perspectives in Plant Ecology, Evolution and Systematics, 12, 4355.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. (2009b). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4, 16.Google Scholar
Lobry de Bruyn, L. A. (1999). Ants as bioindicators of soil function in rural environments. Agriculture Ecosystems & Environment, 74, 425441.Google Scholar
Mayer, V. E., Frederickson, M. E., MvKey, D. & Blatrix, R. (2014). Current issues in the evolutionary ecology of ant-plant symbioses. New Phytologist, 202, 749764.Google Scholar
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: A Framework for Assessment. Washington, DC: Island Press.Google Scholar
Palmer, T. M., Stanton, M. L., Young, T. P., Goheen, J. R., Pringle, R. M. & Karban, R. 2008 Breakdown of an ant-plant mutualism follows loss of large herbivores from an African savanna. Science 319, 192–195.Google Scholar
Price, P. W. (1980). Evolutionary Biology of Parasites. Princeton: Princeton University Press.Google Scholar
Pudlo, R. J., Beattie, A. J. & Culver, D. C. (1980). Population consequences of changes in an ant-seed mutualism in Sanguinaria Canadensis. Oecologia, 46, 3237.Google Scholar
Rastogi, N. (2011). Provisioning services from ants: food and pharamceuticals. Asian Myrmecology, 4, 103120.Google Scholar
Ribas, C. R., Campos, R. B. F., Schmidt, F. A. & Solar, R. R. C. (2012). Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche, 636749, doi:10.1155/2012/636749Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.Google Scholar
Rosenau, J. (2016). That sinking feeling. New Scientist, 231, 1819.Google Scholar
Rowles, A. D. & O’Dowd, D. J. (2009). New mutualism for old: indirect disruption and direct facilitation of seed dispersal following Argentine ant invasion. Oecologia, 158, 709716.Google Scholar
Rudgers, J. A. (2004). Enemies of herbivores can shape plant traits: selection in facultative ant-plant mutualism. Ecology, 85, 192205.Google Scholar
Rudgers, J. A. & Strauss, S. Y. (2004). A selection mosaic in the facultative mutualism between ants and wild cotton. Proceedings of the Royal Society B, 271, 24814288.Google Scholar
Rutter, M. T. & Rausher, M. D. (2004). Natural selection of extrafloral nectar production on Chamaecrista fasciculate: the costs and benefits of a mutualism trait. Evolution, 58, 26572668.Google Scholar
Schleuning, M., Frund, J. & Garcia, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography, 38, 380392.Google Scholar
Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. (2009). Causes and Consequences of Species Extinctions. In Princeton Guide to Ecology, ed. Levin, S.A. Princeton: Princeton University Press, pp. 514–520.Google Scholar
Stuart, S. N., Wilson, E. O., McNeely, J. A., Mittermeier, R. A. & Rodriguez, J. P. (2010). Barometer of life: response. Science, 329, 141142.Google Scholar
Thackerey, S. J., Henrys, P. A., Hemmeing, D. et al. (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature, 535, 241245.Google Scholar
Trager, M. D., Bhotika, S., Hostetler, J. A. et al. (2010). Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS ONE, 5, e14308.Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 13511363.Google Scholar
Underwood, A. J. (1991). Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Marine & Freshwater Research, 42, 569587.Google Scholar
Valiente-Banuet, A., Aizen, M. A., Alcantara, J. M. et al. (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 29, 299307.Google Scholar
Venter, O., Sanderson, E. W., Magrach, A. et al. (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7, 12558, doi:10.1038/ncomms12558.Google Scholar
Watson, J. E. M., Shanahan, D. F., Di Marco, M. et al. (2016). Catastrophic declines in wilderness areas undermine global environment targets. Current Biology, 26, 16.Google Scholar
Wilson, E. O. (2016). Half Earth: Our Planet’s Fight for Life. New York: Liveright Publishing Corporation.Google Scholar
Wilson, E. O. & Holldobler, B. (2005). The rise of the ants: a phylogenetic and ecological explanation. PNAS, 102, 74117414.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×