Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T08:42:33.642Z Has data issue: false hasContentIssue false

2 - Induced pluripotent stem cells

from Part I - Introduction to stem cells and regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Akitsu Hotta
Affiliation:
Kyoto University
Shinya Yamanaka
Affiliation:
Kyoto University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction to iPS cells

Induced pluripotent stem cells, or iPS cells, have quite similar characteristics to embryonic stem (ES) cells, such as pluripotency and unlimited self-renewal, yet can be derived from somatic cells without using embryos [1]. “Pluripotency” is defined as the ability to differentiate in response to extrinsic cues into all somatic lineages that comprise the entire body, including the germ line. An unlimited self-renewal capacity allows a large amount of stem cells to be cultured and grown in the laboratory. Such unique cell identities are programmed in the gene-expression patterns and epigenetic modification patterns of ES cells, and are quite different from other somatic cells. However, the somatic cells can be “reprogrammed” to confer ES cell-like pluripotency by introducing a cocktail of genes (so-called reprogramming factors) – typically Oct4, Sox2, Klf4, and c-Myc. Therefore, iPS cells hold great promise not only for basic biological studies of cell-fate decisions, but also for medical applications. In this chapter, we first summarize a number of methodologies developed to derive iPS cells, and later discuss the recent progress and challenges in the clinical application of iPS cells.

Cells of origin

Many different types of somatic cells have been reprogrammed to pluripotency to generate iPS cells (Table 2.1). Fibroblasts were the first cell type to be reprogrammed [2, 3], and are one of the most widely used cell types so far, because of the well-established culture conditions, distinct morphology from ES cells, high susceptibility to retroviral vector transduction, and their innate ability to serve as feeder cells. Some particular cell types, especially somatic stem cells or progenitor cells, express a number of reprogramming factors endogenously, which presumably allows low-level transduction of some exogenous reprogramming factor(s). For example, adult neural stem cells [4] and dermal papilla cells [5] endogenously express Sox2 and c-Myc, which allows iPS cells to be derived using only two reprogramming factors (i.e. Oct4 and Klf4), although the resulting reprogramming efficiency is lower than that obtained for cells reprogrammed using the four factors. Keratinocytes are an attractive cell source because of their higher reprogramming efficiency [6]. However, the cultivation and expansion of keratinocytes is challenging [7]. In the hematopoietic lineage, the differentiation stage of the cells influences the efficiency of their reprogramming. Hematopoietic stem/progenitor cells generate iPS cells better than do terminally differentiated B and T cells [8].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yamanaka, S. and Blau, H. M. 2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465(7299), 704–12.CrossRefGoogle ScholarPubMed
Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–76.CrossRefGoogle ScholarPubMed
Takahashi, K., Tanabe, K., Ohnuki, M. et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–72.CrossRefGoogle ScholarPubMed
Kim, J. B., Zaehres, H., Wu, G. et al. 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454(7204), 646–50.CrossRefGoogle ScholarPubMed
Tsai, S.-Y., Clavel, C., Kim, S. et al. 2010. Oct4 and Klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells, 28(2), 221–8.Google ScholarPubMed
Aasen, T., Raya, A., Barrero, M. J. et al. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnol., 26(11), 1276–84.CrossRefGoogle ScholarPubMed
Aasen, T. and Belmonte, J. 2010. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protoc., 5, 371–82.CrossRefGoogle ScholarPubMed
Eminli, S., Foudi, A., Stadtfeld, M. et al. 2009. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics, 41(9), 968–76.CrossRefGoogle ScholarPubMed
Ye, L., Chang, J. C., Lin, C. et al. 2009. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Nat. Acad. Sci. USA, 106(24), 9826–30.CrossRefGoogle ScholarPubMed
Li, C., Zhou, J., Shi, G. et al. 2009. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum. Mol. Genet., 18(22), 4340–9.CrossRefGoogle ScholarPubMed
Galende, E., Karakikes, I., Edelmann, L. et al. 2010. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram., 12(2), 117–25.CrossRefGoogle ScholarPubMed
Loh, Y. H., Agarwal, S., Park, I. H. et al. 2009. Generation of induced pluripotent stem cells from human blood. Blood, 113(22), 5476–9.CrossRefGoogle ScholarPubMed
Seki, T., Yuasa, S., Oda, M. et al. 2010. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7(1), 11–14.CrossRefGoogle ScholarPubMed
Loh, Y. H., Hartung, O., Li, H. et al. 2010. Reprogramming of T cells from human peripheral blood. Cell Stem Cell, 7(1), 15–19.CrossRefGoogle ScholarPubMed
Brown, M. E., Rondon, E., Rajesh, D. et al. 2010. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One, 5(6), e11373.CrossRefGoogle ScholarPubMed
Staerk, J., Dawlaty, M. M., Gao, Q. et al. 2010. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell, 7(1), 20–4.CrossRefGoogle ScholarPubMed
Hanna, J., Markoulaki, S., Schorderet, P. et al. 2008. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 133(2), 250–64.CrossRefGoogle ScholarPubMed
Kunisato, A., Wakatsuki, M., Kodama, Y. et al. 2010. Generation of induced pluripotent stem (iPS) cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev., 19(2), 229–38.CrossRefGoogle ScholarPubMed
Kim, J. B., Zaehres, H., Wu, G. et al. 2008. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 454, 646–50.CrossRefGoogle ScholarPubMed
Kim, J. B., Sebastiano, V., Wu, G. et al. 2009. Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–19.CrossRefGoogle ScholarPubMed
Ruiz, S., Brennand, K., Panopoulos, A. D. et al. 2010. High-efficient generation of induced pluripotent stem cells from human astrocytes. PLoS One, 5, e15526.CrossRefGoogle ScholarPubMed
Qin, D., Gan, Y., Shao, K. et al. 2008. Mouse meningiocytes express Sox2 and yield high efficiency of chimeras after nuclear reprogramming with exogenous factors. J. Biol. Chem., 283(48), 33730–5.CrossRefGoogle ScholarPubMed
Sun, N., Panetta, N. J., Gupta, D. M. et al. 2009. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Nat. Acad. Sci. USA, 106(37), 15720–5.CrossRefGoogle ScholarPubMed
Sugii, S., Kida, Y., Kawamura, T. et al. 2010. Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc. Nat. Acad. Sci. USA, 107(8), 3558–63.CrossRefGoogle ScholarPubMed
Aoi, T., Yae, K., Nakagaura, M. et al. 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 321, 699–702.CrossRefGoogle ScholarPubMed
Stadtfeld, M., Brennand, K. and Hochedlinger, K. 2008. Reprogramming of pancreatic Beta cells into induced pluripotent stem cells. Curr. Biol., 18(12), 890–4.CrossRefGoogle ScholarPubMed
Utikal, J., Maherali, N., Kulalert, W. and Hochedlinger, K. 2009. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci., 122(19), 3502–10.CrossRefGoogle ScholarPubMed
Yan, X., Qin, H., Qu, C. et al. 2010. iPS cells reprogrammed from mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev., 19(4), 469–80.CrossRefGoogle ScholarPubMed
Tamaoki, N., Takahashi, K., Tanaka, T. et al. 2010. Dental pulp cells for induced pluripotent stem cell banking. J. Dent. Res., 89(8), 773–8.CrossRefGoogle ScholarPubMed
Giorgetti, A., Montserrat, N., Aasen, T. et al. 2009. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell, 5(4), 353–7.CrossRefGoogle ScholarPubMed
Haase, A., Olmer, R., Schwanke, K. et al. 2009. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5(4), 434–41.CrossRefGoogle ScholarPubMed
Daley, G. Q., Lensch, M. W., Jaenisch, R. et al. 2009. Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell, 4, 200–1; author reply 202.CrossRefGoogle ScholarPubMed
Yu, J., Vodyanik, M. A., Smuga-Otto, K. et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–20.CrossRefGoogle ScholarPubMed
Zhou, W. and Freed, C. R. 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–74.CrossRefGoogle ScholarPubMed
Fusaki, N., Ban, H., Nishiyama, A. et al. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jap. Acad. Ser. B Phys. Biol. Sci., 85(8), 348–62.CrossRefGoogle Scholar
Yu, J., Hu, K., Smuga-Otto, K. et al. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.CrossRefGoogle ScholarPubMed
Okita, K., Matsumura, Y., Sato, Y. et al. 2011. A more efficient method to generate integration-free human iPS cells. Nature Methods, 8(5), 409–12.CrossRefGoogle ScholarPubMed
Woltjen, K., Michael, I. P., Mohseni, P. et al. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–70.CrossRefGoogle ScholarPubMed
Kaji, K., Norrby, K., Paca, A. et al. 2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–5.CrossRefGoogle ScholarPubMed
Yusa, K., Rad, R., Takeda, J. et al. 2009. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature Methods, 6(5), 363–9.CrossRefGoogle ScholarPubMed
Jia, F., Wilson, K. D., Sun, N. et al. 2010. A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7(3), 197–9.CrossRefGoogle ScholarPubMed
Kim, D., Kim, C. H., Moon, J. I. et al. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–6.CrossRefGoogle ScholarPubMed
Warren, L., Manos, P. D., Ahfeldt, T. et al. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–30.CrossRefGoogle ScholarPubMed
Miyoshi, N., Ishii, H., Nagano, H. et al. 2011. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–8.CrossRefGoogle ScholarPubMed
Nakagawa, M., Koyanagi, M., Tanabe, K. et al. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol., 26(1), 101–6.CrossRefGoogle ScholarPubMed
Feng, B., Jiang, J., Kraus, P. et al. 2009. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biol., 11(2), 197–203.CrossRefGoogle ScholarPubMed
Blelloch, R., Venere, M., Yen, J. and Ramalho-Santos, M. 2007. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 1, 245–247.CrossRefGoogle ScholarPubMed
Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T. and Yamanaka, S. 2010. Promotion of direct reprogramming by transformation-deficient Myc. Proc. Nat. Acad. Sci. USA, 107(32), 14152–7.CrossRefGoogle ScholarPubMed
Hong, H., Takahashi, K., Ichisaka, T. et al. 2009. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 460(7259), 1132–5.CrossRefGoogle ScholarPubMed
Kawamura, T., Suzuki, J., Wang, Y. V. et al. 2009. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–4.CrossRefGoogle ScholarPubMed
Li, H., Collado, M., Villasante, A. et al. 2009. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–9.CrossRefGoogle ScholarPubMed
Marion, R. M., Strati, K., Li, H. et al. 2009. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature, 460(7259), 1149–53.CrossRefGoogle ScholarPubMed
Utikal, J., Polo, J. M., Stadtfeld, M. et al. 2009. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259), 1145–8.CrossRefGoogle ScholarPubMed
Tsubooka, N., Ichisaka, T., Okita, K. et al. 2009. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells, 14(6), 683–94.CrossRefGoogle ScholarPubMed
Chen, T., Yuan, D., Wei, B. et al. 2010. E-cadherin-mediated cell–cell contact is critical for induced pluripotent stem cell generation. Stem Cells, 28(8), 1315–25.CrossRefGoogle ScholarPubMed
Zhang, Z., Jones, A., Sun, C. W. et al. 2011. PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells, 29(2), 229–40.CrossRefGoogle ScholarPubMed
Loewer, S., Cabili, M. N., Guttman, M. et al. 2010. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genet., 42(12), 1113–7.CrossRefGoogle ScholarPubMed
Li, Z., Yang, C. S., Nakashima, K. and Rana, T. M. 2011. Small RNA-mediated regulation of iPS cell generation. EMBO J, 30, 823–34.CrossRefGoogle ScholarPubMed
Subramanyam, D., Lamouille, S., Judson, R. L. et al. 2011. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnol., 29, 443–8.CrossRefGoogle ScholarPubMed
Han, J., Yang, H., Zhang, J. et al. 2010. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature, 463(7284), 1096–100.CrossRefGoogle ScholarPubMed
Zhao, Y., Yin, X., Qin, H. et al. 2008. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 3(5), 475–9.CrossRefGoogle ScholarPubMed
Edel, M. J., Menchon, C., Menendez, S. et al. 2010. Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes Development, 24(6), 561–73.CrossRefGoogle ScholarPubMed
Lian, I., Kim, J., Okazaura, H. et al. 2010. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Development, 24(11), 1106–18.CrossRefGoogle ScholarPubMed
Judson, R. L., Babiarz, J. E., Venere, M. and Blelloch, R. 2009. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnol., 27(5), 459–61.CrossRefGoogle ScholarPubMed
Maekawa, M., Yamaguchi, K., Nakamura, T. et al. 2011. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474, 225–9.CrossRefGoogle ScholarPubMed
Mali, P., Ye, Z., Hommond, H. H. et al. 2008. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells, 26, 1998–2005.CrossRefGoogle ScholarPubMed
Nagamatsu, G., Kosaka, T., Kawasumi, M. et al. 2011. A germ cell-specific gene, Prmt5, works in somatic cell reprogramming. J. Biol. Chem., 286(12), 10641–8.CrossRefGoogle ScholarPubMed
Heng, J. C., Feng, B., Han, J. et al. 2010. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6(2), 167–74.CrossRefGoogle ScholarPubMed
Picanço-Castro, V., Russo-Carbolante, E., Reis, L. C. J. et al. 2011. Pluripotent reprogramming of fibroblasts by lentiviral-mediated insertion of SOX2, C-MYC and TCL-1A. Stem Cells Dev., 20(1), 169–80.CrossRefGoogle ScholarPubMed
Anokye-Danso, F., Trivedi, C. M., Juhr, D. et al. 2011. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–88.CrossRefGoogle ScholarPubMed
Okita, K., Ichisaka, T. and Yamanaka, S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.CrossRefGoogle ScholarPubMed
Maherali, N., Sridharan, R., Xie, W. et al. 2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.CrossRefGoogle ScholarPubMed
Wernig, M., Meissner, A., Foreman, R. et al. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.CrossRefGoogle ScholarPubMed
Lowry, W. E., Richter, L., Yachechko, R. et al. 2008. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Nat. Acad. Sci. USA, 105(8), 2883–8.CrossRefGoogle ScholarPubMed
Chan, E. M., Ratansirintrawoot, S., Park, I. H. et al. 2009. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnol., 27(11), 1033–7.CrossRefGoogle ScholarPubMed
Hotta, A., Cheung, A. Y. L., Farra, N. et al. 2009. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods, 6(5), 370–6.CrossRefGoogle ScholarPubMed
Hotta, A. and Ellis, J. 2008. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. J. Cell Biochem., 105, 940–8.CrossRefGoogle ScholarPubMed
Soldner, F., Hockemeyer, D., Beard, C. et al. 2009. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.CrossRefGoogle ScholarPubMed
Miura, K., Okada, Y., Aoi, T. et al. 2009. Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnol., 27(8), 743–5.CrossRefGoogle ScholarPubMed
Wernig, M., Zhao, J. P., Pruszak, J. et al. 2008. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Nat. Acad. Sci. USA, 105(15), 5856–61.CrossRefGoogle ScholarPubMed
Osafune, K., Caron, L., Borowiak, M. et al. 2008. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnol, 26(3), 313–15.CrossRefGoogle ScholarPubMed
Martin, M. J., Muotri, A., Gage, F. and Varki, A. 2005. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Med., 11(2), 228–32.CrossRefGoogle ScholarPubMed
Takahashi, K., Narita, M., Yokura, M., Ichisaka, T. and Yamanaka, S. 2009. Human induced pluripotent stem cells on autologous feeders. PLoS One, 4(12), e8067.CrossRefGoogle ScholarPubMed
Rodriguez-Piza, I., Richaud-Patin, Y., Vassena, R. et al. 2009. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells, 28(1), 36–44.Google Scholar
Hayashi, Y., Chan, T., Warashina, M. et al. 2010. Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One, 5(11), e14099.CrossRefGoogle ScholarPubMed
Rodin, S., Domogatskaya, A., Ström, S. et al. 2010. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnol., 28(6), 611–15.CrossRefGoogle ScholarPubMed
Melkoumian, Z., Weber, J. L., Weber, D. M. et al. 2010. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol., 28, 606–10.CrossRefGoogle ScholarPubMed
Villa-Diaz, L. G., Nandivada, H., Ding, J. et al. 2010. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnol., 28, 581–3.CrossRefGoogle ScholarPubMed
Mei, Y., Saha, K., Bogatyrev, S. R. et al. 2010. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Mater., 9(9), 768–78.CrossRefGoogle ScholarPubMed
Gore, A., Li, Z., Fung, H. L. et al. 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63–7.CrossRefGoogle ScholarPubMed
Laurent, L. C., Ulitsky, I., Slavin, I. et al. 2011. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8, 106–18.CrossRefGoogle ScholarPubMed
Hussein, S. M., Batada, N. N., Vuoristo, S. et al. 2011. Copy number variation and selection during reprogramming to pluripotency. Nature, 471, 58–62.CrossRefGoogle ScholarPubMed
Martins-Taylor, K., Nisler, B. S., Taapken, S. M. et al., 2011. Recurrent copy number variations in human induced pluripotent stem cells. Nature Biotechnol., 29, 488–91.CrossRefGoogle ScholarPubMed
Mayshar, Y., Ben-David, U., Neta, L. et al. 2010. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7(4), 521–31.CrossRefGoogle ScholarPubMed
Chin, M. H., Mason, M. J., Xie, W. et al. 2009. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–23.CrossRefGoogle ScholarPubMed
Saha, K. and Jaenisch, R. 2009. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 5, 584–95.CrossRefGoogle ScholarPubMed
Dimos, J. T., Rodolfa, K. T., Niakan, K. K. et al. 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321, 1218–21.CrossRefGoogle ScholarPubMed
Ebert, A. D., Yu, J., Rose, F. F. et al. 2009. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–80.CrossRefGoogle ScholarPubMed
Lee, G., Papapetrou, E. P., Kim, H. et al. 2009. Modeling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature, 461(7262), 402–6.CrossRefGoogle Scholar
Nguyen, H. N., Byers, B., Cord, B. et al. 2011. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3), 267–80.CrossRefGoogle ScholarPubMed
Marchetto, M. C. N., Carromeu, C., Acab, A. et al. 2010. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–39.CrossRefGoogle ScholarPubMed
Cheung, A. Y., Horvath, L. M., Grafodatskaya, D. et al. 2011. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Human Molec. Genetics, 20(11), 2103–15.CrossRefGoogle ScholarPubMed
Chamberlain, S. J., Chen, P.-F., Ng, K. Y. et al. 2010. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc. Nat. Acad. Sci. USA, 107(41), 17668–73.CrossRefGoogle ScholarPubMed
Yang, J., Cai, J., Zhang, Y. et al. 2010. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader–Willi syndrome. J. Biol. Chem., 285(51), 40303–11.CrossRefGoogle ScholarPubMed
Urbach, A., Bar-Nur, O., Daley, G. Q. et al. 2010. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell, 6(5), 407–11.CrossRefGoogle ScholarPubMed
Zhang, N., An, M. C., Montoro, D. and Ellerby, L. M. 2010. Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr., 2, RRN1193.CrossRefGoogle ScholarPubMed
Liu, J., Verma, P. J., Evans-Galea, M. V. et al. 2011. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev., 7(3), 703–13.CrossRefGoogle ScholarPubMed
Brennand, K. J., Simone, A., Jou, J. et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–5.CrossRefGoogle ScholarPubMed
Howden, S., Gore, A., Li, Z. et al. 2011. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Nat. Acad. Sci. USA, 108, 6537–42.CrossRefGoogle ScholarPubMed
Kazuki, Y., Hiratsuka, M., Takiguchi, M. et al. 2010. Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Molec. Ther., 18, 386–93.CrossRefGoogle ScholarPubMed
Yazawa, M., Hsueh, B., Jia, X. et al. 2011. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–4.CrossRefGoogle ScholarPubMed
Itzhaki, I., Maizels, L., Huber, I. et al. 2011. Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–9.CrossRefGoogle Scholar
Maehr, R., Chen, S., Snitow, M. et al. 2009. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Nat. Acad. Sci. USA, 106(37), 15768–73.CrossRefGoogle ScholarPubMed
Liu, G. H., Barkho, B. Z., Ruiz, S. et al. 2011. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 472(7342), 221–5.CrossRefGoogle ScholarPubMed
Zhang, J., Lian, Q., Zhu, G. et al. 2011. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell, 8(1), 31–45.CrossRefGoogle ScholarPubMed
Carvajal-Vergara, X., Sevilla, A., D’souza, S. L. et al. 2010. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299), 808–12.CrossRefGoogle ScholarPubMed
Papapetrou, E. P., Lee, G., Malani, N. et al. 2011. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nature Biotechnol., 29, 73–8.CrossRefGoogle ScholarPubMed
Raya, Á., Rodríguez-Pizà, I., Guenechea, G. et al. 2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 460(7251), 53–9.CrossRefGoogle ScholarPubMed
Hu, K., Yu, J., Suknuntha, K. et al. 2011. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood, 117(14), e109–19.CrossRefGoogle ScholarPubMed
Park, I.-H., Arora, N., Huo, H. et al. 2008. Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.CrossRefGoogle ScholarPubMed
Keirstead, H. S., Nistor, G., Bernal, G. et al. 2005. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci., 25(19), 4694–705.CrossRefGoogle ScholarPubMed
Vierbuchen, T., Ostermeier, A., Zhiping, P. et al. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–41.CrossRefGoogle ScholarPubMed
Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E. et al. 2011. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–232.CrossRefGoogle ScholarPubMed
Pfisterer, U., Kirkeby, A., Torper, O. et al. 2011. Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Nat. Acad. Sci. USA, 108(25), 10343–8.CrossRefGoogle ScholarPubMed
Kim, J., Su, S. C., Wang, H. et al. 2011. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc. Nat. Acad. Sci. USA, 108(19), 7838–43.CrossRefGoogle ScholarPubMed
Szabo, E., Rampalli, S., Risueno, R. M. et al. 2010. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature, 468(7323), 521–6.CrossRefGoogle ScholarPubMed
Ieda, M., Fu, J. D., Delgado-Olguin, P. et al. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–86.CrossRefGoogle ScholarPubMed
Hiramatsu, K., Sasagawa, S., Outani, H. et al. 2011. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J. Clin. Investigation, 121(2), 640–57.CrossRefGoogle ScholarPubMed
Huang, P., He, Z., Ji, S. et al. 2011. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475(7356), 386–9.CrossRefGoogle ScholarPubMed
Sekiya, S. and Suzuki, A. 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature, 475(7356), 390–3.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×