Skip to main content Accessibility help
×
Hostname: page-component-65b85459fc-22psd Total loading time: 0 Render date: 2025-10-18T20:16:30.785Z Has data issue: false hasContentIssue false

5 - The Behavioral Genetics of Aggression and Violent Behavior

from Part II - Biosocial Foundations of Violence and Aggression

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Barnes, J. C. & Boutwell, B. B. (2013). A demonstration of the generalizability of twin-based research on antisocial behavior. Behavior Genetics, 43, 120131.CrossRefGoogle ScholarPubMed
Barnes, J. C., Boutwell, B. B., & Beaver, K. M. (2016). Contemporary biosocial criminology: A systematic review of the literature, 2000–2012. In Piquero, A. R. (Ed.), The handbook of criminological theory. New York: Wiley-Blackwell.Google Scholar
Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., & Beaver, K. M. (2014). Demonstrating the validity of twin research in criminology. Criminology, 52, 588626.10.1111/1745-9125.12049CrossRefGoogle Scholar
Bearden, C. E. & Freimer, N. B. (2006). Endophenotypes for psychiatric disorders: ready for primetime? Trends in Genetics, 22, 306313.CrossRefGoogle ScholarPubMed
Beaver, K. M., Wright, J. P., DeLisi, M., & Vaughn, M. G. (2008). Desistance from delinquency: The marriage effect revisited and extended. Social Science Research, 37, 736752.CrossRefGoogle ScholarPubMed
Berger, B., Gaspar, P., & Verney, C. (1991). Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in Neuroscience, 14, 2127.CrossRefGoogle ScholarPubMed
Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota Study of Twins Reared Apart. Science, 250, 223228.10.1126/science.2218526CrossRefGoogle ScholarPubMed
Brevik, E. J., van Donkelaar, M. M., Weber, H., Sánchez-Mora, C. Jacobs, C., Rivero, O., … & Cormand, B. (2016). Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. American Journal of Medical Genetics Part B, 171:B, 733747.CrossRefGoogle Scholar
Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H., & van Oost, B. A. (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262, 578580.10.1126/science.8211186CrossRefGoogle ScholarPubMed
Buckholtz, J. W., Callicott, J. H., Kolachana, B., Hariri, A. R., Goldberg, T. E., Genderson, M., … & Meyer-Lindenberg, A. (2008). Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Molecular Psychiatry, 13, 313324.CrossRefGoogle ScholarPubMed
Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., … & Consortium, S.W.G. of the P.G. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47, 291295.10.1038/ng.3211CrossRefGoogle ScholarPubMed
Burt, S. A. (2009). Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clinical Psychology Review, 29, 163178.10.1016/j.cpr.2008.12.004CrossRefGoogle ScholarPubMed
Burt, S. A. (2016). Editorial: Chickens and eggs – how should we interpret environment-behavior associations? Journal of Child Psychology and Psychiatry, 57, 113115.10.1111/jcpp.12523CrossRefGoogle ScholarPubMed
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365376.10.1038/nrn3475CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science 24, 304312.10.1177/0963721415580430CrossRefGoogle ScholarPubMed
Charney, E. (2012). Behavior genetics and postgenomics. Behavioral and Brain Sciences, 35, 331410.10.1017/S0140525X11002226CrossRefGoogle ScholarPubMed
Charney, E. & English, W. (2012). Candidate genes and political behavior. American Political Science Review, 106, 134.CrossRefGoogle Scholar
Chatterjee, N., Shi, J., & García-Closas, M. (2016). Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nature Reviews Genetics, 17, 392406.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
De Leeuw, C. A., Neale, B. M., Heskes, T., & Posthuma, D. (2016). The statistical properties of gene-set analysis. Nature Reviews Genetics, 17, 353364.10.1038/nrg.2016.29CrossRefGoogle ScholarPubMed
Dick, D., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., … & Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Sciences, 10, 3759.10.1177/1745691614556682CrossRefGoogle ScholarPubMed
Dick, D. M., Krueger, R. F., Edwards, A., Agrawal, A., Lynskey, M., Lin, P., … & Almasy, L. (2011). Genome-wide association study of conduct disorder symptomatology. Molecular Psychiatry, 16, 800808.10.1038/mp.2010.73CrossRefGoogle ScholarPubMed
Dierick, H. A. & Greenspan, R. J. (2006). Molecular analysis of flies selected for aggressive behavior. Nature Genetics, 38, 10231031.10.1038/ng1864CrossRefGoogle ScholarPubMed
Dierick, H. A. & Greenspan, R. J. (2007). Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nature Genetics, 39, 678682.10.1038/ng2029CrossRefGoogle ScholarPubMed
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348.10.1371/journal.pgen.1003348CrossRefGoogle ScholarPubMed
Duncan, L. E. & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.10.1176/appi.ajp.2011.11020191CrossRefGoogle ScholarPubMed
Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., & Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 11, 446450.10.1038/nrg2809CrossRefGoogle ScholarPubMed
Euesden, J., Lewis, C. M., & O’Reilly, P. F. (2016). PRSice: Polygenic risk score software. http://PRSice.info.Google Scholar
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). New York: Pearson.Google Scholar
Fernàndez-Castillo, N. & Cormand, B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 1–21.Google Scholar
Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T., … & Anderson, C. A. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genetics, 42, 11181125.10.1038/ng.717CrossRefGoogle ScholarPubMed
Gelman, A. & Loken, E. (2014). The statistical crisis in science. American Scientist, 102, 460465.CrossRefGoogle Scholar
Gottesman, I. I. & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.CrossRefGoogle ScholarPubMed
Higley, J., Mehlman, P. T., Taub, D. M., Higley, S. B., Suomi, S. J., Linnoila, M., & Vickers, J. H. (1992). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436441.CrossRefGoogle ScholarPubMed
Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics, 4, e1000008.CrossRefGoogle ScholarPubMed
Hindorff, L. A., MacArthur, J., Morales, J., Junkins, H. A., Hall, P. N., Klemm, A. K., & Manolio, T. A. A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies. Accessed November 1, 2017.CrossRefGoogle Scholar
Ioannidis, J. P. (2003). Genetic associations: False or true? Trends in Molecular Medicine, 9, 135138.10.1016/S1471-4914(03)00030-3CrossRefGoogle ScholarPubMed
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2, e124.CrossRefGoogle ScholarPubMed
Jorgenson, E. & Witte, J. S. (2006). A gene-centric approach to genome-wide association studies. Nature Reviews Genetics, 7, 885891.CrossRefGoogle ScholarPubMed
Kendler, K. S. & Neale, M. C. (2010). Endophenotype: A conceptual analysis. Molecular Psychiatry, 15, 789797.CrossRefGoogle ScholarPubMed
Khatri, P., Sirota, M., & Butte, A. J. (2012). Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Computational Biology 8, e1002375.10.1371/journal.pcbi.1002375CrossRefGoogle ScholarPubMed
Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Estimating missing heritability for disease from genome-wide association studies. American Journal of Human Genetics, 88, 294305.10.1016/j.ajhg.2011.02.002CrossRefGoogle ScholarPubMed
Lin, D., Boyle, M. P., Dollar, P., Lee, H., Perona, P., Lein, E. S., & Anderson, D. J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature, 470, 221226.CrossRefGoogle ScholarPubMed
Lips, E. S., Cornelisse, L. N., Toonen, R. F., Min, J. L., Hultman, C. M., International Schizophrenia Consortium, … & Posthuma, D. (2012). Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry, 17, 9961006.CrossRefGoogle ScholarPubMed
Liu, G., Wang, Y., & Wong, L. (2010). FastTagger: An efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC Bioinformatics, 11, 66.10.1186/1471-2105-11-66CrossRefGoogle ScholarPubMed
Liu, H. & Guo, G. (2016). Opportunities and challenges of big data for the social sciences: The case of genomic data. Social Science Research, 59, 1322.CrossRefGoogle ScholarPubMed
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … & Chakravarti, A. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.10.1038/nature08494CrossRefGoogle ScholarPubMed
Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T. N., Schechter, J. C., Yu, H. H., … & Blair, R. J. R. (2011). Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research: Neuroimaging, 194, 279286.10.1016/j.pscychresns.2011.07.008CrossRefGoogle ScholarPubMed
Mason, D. A. & Frick, P. J. (1994). The heritability of antisocial behavior: A meta-analysis of twin and adoption studies. Journal of Psychopathology and Behavioral Assessment, 16, 301323.10.1007/BF02239409CrossRefGoogle Scholar
Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22, 635659.10.2307/2089193CrossRefGoogle Scholar
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., … & Egan, M., (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences, 103, 62696274.10.1073/pnas.0511311103CrossRefGoogle ScholarPubMed
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., … & Houstis, N. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267273.10.1038/ng1180CrossRefGoogle ScholarPubMed
Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. The Journal of Neuroscience, 31(48), 1734817357.CrossRefGoogle ScholarPubMed
Munafo, M. R., Stothart, G., & Flint, J. (2009). Bias in genetic association studies and impact factor. Molecular Psychiatry, 14, 119120.10.1038/mp.2008.77CrossRefGoogle ScholarPubMed
Nelson, R. J. & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536546.10.1038/nrn2174CrossRefGoogle ScholarPubMed
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … & Oskarsson, S. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539542.10.1038/nature17671CrossRefGoogle ScholarPubMed
Olivier, B. & Young, L. J. (2002). Animal models of aggression. Neuropsychopharmacology: The Fifth Generation of Progress, 118, 16991708.Google Scholar
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., … & Evans, D. M. (2016). A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 562572.10.1002/ajmg.b.32333CrossRefGoogle ScholarPubMed
Pereira, T. V. & Ioannidis, J. P. (2011). Statistically significant meta-analyses of clinical trials have modest credibility and inflated effects. Journal of Clinical Epidemiology, 64, 10601069.10.1016/j.jclinepi.2010.12.012CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science 11, 323.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York: Worth.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.10.1038/ng.3285CrossRefGoogle ScholarPubMed
Preuss, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 124.10.1162/jocn.1995.7.1.1CrossRefGoogle ScholarPubMed
Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554571.CrossRefGoogle ScholarPubMed
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.10.1016/B978-0-08-057148-5.50005-8CrossRefGoogle Scholar
Rafter, N., Posick, C., & Rocque, M. (2016). The criminal brain: Understanding biological theories of crime. New York: New York University Press.Google Scholar
Rautiainen, M. R., Paunio, T., Repo-Tiihonen, E., Virkkunen, M., Ollila, H. M., Sulkava, S., … & Tiihonen, J. (2016). Genome-wide association study of antisocial personality disorder. Translational Psychiatry, 6, e883.10.1038/tp.2016.155CrossRefGoogle ScholarPubMed
Rhee, S. H. & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490529.10.1037/0033-2909.128.3.490CrossRefGoogle ScholarPubMed
Risch, N. & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 15161517.CrossRefGoogle ScholarPubMed
Salvatore, J. E., Edwards, A. C., McClintick, J. N., Bigdeli, T. B., Adkins, A., Aliev, F., … & Nurnberger, J. I. (2015). Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior. Translational Psychiatry, 5, e558.CrossRefGoogle ScholarPubMed
Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.10.1038/nature13595CrossRefGoogle Scholar
Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., … & Prokunina-Olsson, L. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316 (5829), 13411345.10.1126/science.1142382CrossRefGoogle ScholarPubMed
Sham, P. C. & Purcell, S. M. (2014). Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics, 15(5), 335346.10.1038/nrg3706CrossRefGoogle ScholarPubMed
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 13591366.10.1177/0956797611417632CrossRefGoogle ScholarPubMed
Smith, G. D. (2011). Epidemiology, epigenetics and the “gloomy prospect”: Embracing randomness in population health research and practice. International Journal of Epidemiology, 40, 537562.10.1093/ije/dyr117CrossRefGoogle ScholarPubMed
Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61, 11211126.10.1016/j.biopsych.2006.11.010CrossRefGoogle ScholarPubMed
Tielbeek, J. J., Johansson, A., Polderman, T. J. C., Rautiainen, M. R., Jansen, P., Taylor, M., … & Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry, 74, 1242-1250.10.1001/jamapsychiatry.2017.3069CrossRefGoogle Scholar
TiChabelbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A. F., … & Verweij, K. J. H. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLoS ONE, 7, e45086.CrossRefGoogle Scholar
Tielbeek, J. J., Linnér, R. K., Beers, K., Posthuma, D., Popma, A., & Polderman, T. J. C. (2016). Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. American Journal of Medical Genetics Part B, 171:B, 748760.10.1002/ajmg.b.32442CrossRefGoogle Scholar
Tilihonen, J., Rautiainen, M.-R., Ollila, H. M., Repo-Tilihonen, E., Virkkunen, M., Palotie, A., … & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20, 786792.CrossRefGoogle Scholar
Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164.CrossRefGoogle Scholar
Turkheimer, E. & Harden, K. P. (2014). Behavior genetic research methods: Testing quasi-causal hypotheses using multivariate twin data. In Reis, H. T. & Jude, C. M. (Eds), Handbook of research methods in social and personality psychology (2nd ed.). New York: Cambridge University Press.Google Scholar
van Erp, A. M. M. & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. The Journal of Neuroscience, 20, 93209325.CrossRefGoogle ScholarPubMed
Vassos, E., Collier, D. A., & Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19, 471477.10.1038/mp.2013.31CrossRefGoogle ScholarPubMed
Veroude, K., Zhang-James, Y, Fernàndez-Castillo, N., Bakker, M. J., Cormand, B., & Faraone, S. V. (2016). Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B, 171, 343.10.1002/ajmg.b.32364CrossRefGoogle Scholar
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146, 317.10.1016/j.bbr.2003.09.028CrossRefGoogle ScholarPubMed
Waltes, R., Chiocchetti, A. G., & Freitag, C. M. (2016). The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. American Journal of Medical Genetics Part B, 171, 650675.10.1002/ajmg.b.32388CrossRefGoogle ScholarPubMed
Wang, K., Li, M., & Hakonarson, H. (2010). Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics, 11, 843854.10.1038/nrg2884CrossRefGoogle ScholarPubMed
Wertz, J., Caspi, A., Belsky, D. W., Beckley, A. L., Arseneault, L., Barnes, J. C., Corcoran, D. L., Hogan, S., Houts, R., Morgan, N., Odgers, C., Prinz, J., Sugden, K., Williams, B., Poulton, R., & Moffitt, T. E. (2017). Genetics and crime: Integrating new genomic discoveries into psychological research about antisocial behavior. Psychological Science, forthcoming.Google Scholar
Wise, S. P. (2008). Forward frontal fields: Phylogeny and fundamental function. Trends in Neuroscience, 31, 599608.CrossRefGoogle ScholarPubMed
Wright, J. P., Barnes, J. C., Boutwell, B. B., Schwartz, J. A., Connolly, J. A., Nedelec, J. L., & Beaver, K. M. (2015). Mathematical proof is not minutiae and irreducible complexity is not a theory: A final response to Burt and Simons and a call to criminologists. Criminology, 53, 113120.10.1111/1745-9125.12059CrossRefGoogle Scholar
Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A., Lee, S. H., … & van Vliet-Ostaptchouk, J. V. (2015). Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics, 47, 1114–1120.Google ScholarPubMed
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., … & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569.10.1038/ng.608CrossRefGoogle ScholarPubMed
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.10.1016/j.ajhg.2010.11.011CrossRefGoogle ScholarPubMed
Yang, Y. & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174, 8188.10.1016/j.pscychresns.2009.03.012CrossRefGoogle ScholarPubMed
Yang, Y., Raine, A., Narr, K. L., Colletti, P., & Toga, A. W. (2009). Localization of deformations within the amygdala in individuals with psychopathy. Archives of General Psychiatry, 66, 986994.10.1001/archgenpsychiatry.2009.110CrossRefGoogle ScholarPubMed
Zhou, C., Rao, Y., & Rao, Y. (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neuroscience, 11, 10591067.10.1038/nn.2164CrossRefGoogle ScholarPubMed
Zuk, O, Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences, 109, 11931198.10.1073/pnas.1119675109CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×