Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-12T19:08:33.625Z Has data issue: false hasContentIssue false

6 - Neuroimaging Evidence of Violence and Aggression

from Part II - Biosocial Foundations of Violence and Aggression

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amen, D. G., Stubblefield, M., Carmichael, B., & Thisted, R. (1996). Brain SPECT findings and aggressiveness. Annals of Clinical Psychiatry, 8(3), 129137.Google Scholar
Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research: Neuroimaging, 147(2–3), 213220.Google Scholar
Anderson, N. E. & Kiehl, K. A. (2014). Psychopathy: Developmental perspectives and their implications for treatment. Restorative Neurology and Neuroscience, 32(1), 103117.CrossRefGoogle ScholarPubMed
Baird, A. & Fugelsang, J. A. (2004). The emergence of consequential thought: evidence from neuroscience, Philosophical Transactions of the Royal Society of London B, 359, 17971804.Google ScholarPubMed
Barkataki, I., Kumari, V., Das, M., Taylor, P., & Sharma, T. (2006). Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behavioural Brain Research, 169(2), 239247.CrossRefGoogle ScholarPubMed
Bayliss, C. M., Miller, A. K., & Henderson, C. E. (2010). Psychopathy development and implications for early intervention. Journal of Cognitive Psychotherapy, 24(2), 7180.Google Scholar
Bertsch, K., Grothe, M., Prehn, K., Vohs, K., Berger, C., Hauenstein, K., Keiper, P., Domes, G., Teipel, S., & Herpertz, S. C. (2013). Brain volumes differ between diagnostic groups of violent criminal offenders. European Archives of Psychiatry and Clinical Neuroscience, 263(7), 593606.CrossRefGoogle ScholarPubMed
Birbaumer, N., Veit, R., Lotze, M., Erb, M., Hermann, C., Grodd, W., & Flor, H. (2005). Deficient Fear Conditioning in Psychopathy: A Functional Magnetic Resonance Imaging Study. Archives of General Psychiatry, 62(7), 799805.Google Scholar
Boccardi, M., Frisoni, G. B., Hare, R. D., Cavedo, E., Najt, P., Pievani, M., Rasser, P. E., Laakso, M. P., Aronen, H. J., Repo-Tiihonen, E., Vaurio, O., Thompson, P. M., & Tiihonen, J. (2011). Cortex and amygdala morphology in psychopathy. Psychiatry Research: Neuroimaging, 193(2), 8592.Google Scholar
Boccardi, M., Ganzola, R., Rossi, R., Sabattoli, F., Laakso, M. P., Repo-Tiihonen, E., Vaurio, O., Könönen, M., Aronen, H. J., Thompson, P. M., Frisoni, G. B., & Tiihonen, J. (2010). Abnormal hippocampal shape in offenders with psychopathy. Human Brain Mapping, 31(3), 438447.Google Scholar
Bortolato, M., Chen, K., Godar, S., Chen, G., Wu, W. et al. (2011). Social deficits and perseverative behaviors, but not overt aggression, in MAOA hypomorphic mice. Neuropsychopharmacology, 36(13), 26742678.Google Scholar
Calzada-Reyes, A., Alvarez-Amador, A., Galán-García, L., Valdés-Sosa, M., Melie-García, L., Alemán-Gómez, Y., & del Carmen Iglesias-Alonso, J. (2015). MRI study in psychopath and non-psychopath offenders. In Fitzgerald, M. (ed.), Psychopathy: Risk factors, behavioral symptoms and treatment options (pp. 4159). Hauppauge, NY: Nova Science Publishers.Google Scholar
Coccaro, E. F., Lee, R., McCloskey, M., Csernansky, J. G., & Wang, L. (2015). Morphometric analysis of amygdla and hippocampus shape in impulsively aggressive and healthy control subjects. Journal of Psychiatric Research, 69, 8086.Google Scholar
Coccaro, E. (2012). Intermittent explosive disorder as a disorder of impulsive aggression for dsm-5. American Journal of Psychiatry, 169(6), 577Google Scholar
Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80(2), 203211.CrossRefGoogle ScholarPubMed
Dolan, M. C., Deakin, J. W., Roberts, N., & Anderson, I. M. (2002). Quantitative frontal and temporal structural MRI studies in personality-disordered offenders and control subjects. Psychiatry Research: Neuroimaging, 116(3), 133149.CrossRefGoogle ScholarPubMed
Dvorak-Bertsch, J. D., Sadeh, N., Glass, S. J., Thornton, D., & Newman, J. P. (2007). Stroop tasks associated with differential activation of anterior cingulate do not differentiate psychopathic and non-psychopathic offenders. Personality and Individual Differences, 42(3), 585595.CrossRefGoogle Scholar
Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649658.Google Scholar
Fairchild, G., Hagan, C. C., Passamonti, L., Walsh, N. D., Goodyer, I. M., & Calder, A. J. (2014). Atypical neural responses during face processing in female adolescents with conduct disorder. Journal of the American Academy Of Child & Adolescent Psychiatry, 53(6), 677687.Google Scholar
Frankle, W. G., Lombardo, I., New, A. S., Goodman, M., Talbot, P. S., Huang, Y., Hwang, D. R., Slifstein, M., Curry, S., Abi-Dargham, A., Laruelle, M., & Siever, L. J. (2005). Brain Serotonin Transporter Distribution in Subjects With Impulsive Aggressivity: A Positron Emission Study With [¹¹C]McN 5652. American Journal of Psychiatry, 162(5), 915923.Google Scholar
Gansler, D. A., McLaughlin, N. R., Iguchi, L., Jerram, M., Moore, D. W., Bhadelia, R., & Fulwiler, C. (2009). A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Research: Neuroimaging, 171(3), 145154.Google Scholar
Gordon, H. L., Baird, A. A., & End, A. (2004). Functional differences among those high and low on a trait measure of psychopathy. Biological Psychiatry, 56(7), 516521.Google Scholar
Goyer, P. F., Andreason, P. J., Semple, W. E., Clayton, A. H., King, A. C., Compton-Toth, B. A., Schulz, S. C., & Cohen, R. M. (1994). Positron-emission tomography and personality disorders. Neuropsychopharmacology, 10(1), 2128.CrossRefGoogle ScholarPubMed
Hare, R., Mcpherson, L., Forth, A., & Kazdin, A. (1998) Male Psychopaths and Their Criminal Careers. Journal of Consulting and Clinical Psychology, 56(5), 710714.CrossRefGoogle Scholar
Harris, G., Rice, M., & Cormier, C. (1991). Psychopathy and violent recidivism. Law and Human Behavior, 15(6), 625637.CrossRefGoogle Scholar
Hirono, N., Mega, M. S., Dinov, I. D., Mishkin, F., & Cummings, J. L. (2000). Left frontotemporal hypoperfusion in associated with aggression in patients with dementia. Archives of Neurology, 57(6), 861866.Google Scholar
Howard, R., Schellhorn, K., & Lumsden, J. (2013). Complex case: A biofeedback intervention to control impulsiveness in a severely personality disordered forensic patient.Personality and Mental Health, 7(2), 168173. doi: 10.1002/pmh.1231.Google Scholar
Howner, K., Eskildsen, S., Fischer, H., Dierks, T., Wahlund, L., et al. (2012). Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Research, 203, 126131.Google Scholar
Hyde, L. W., Byrd, A. L., Votruba-Drzal, E., Hariri, A. R., & Manuck, S. B. (2014). Amygdala reactivity and negative emotionality: Divergent correlates of antisocial personality and psychopathy traits in a community sample. Journal of Abnormal Psychology, 123(1), 214224.Google Scholar
Intrator, J., Hare, R., Stritzke, P., Brichtswein, K., Dorfman, D., Harpur, T., Bernstein, D., Handelsman, L., Schaefer, C., Keilp, J., Rosen, J., & Machac, J. (1997). A brain imaging (single photon emission computerized tomography) study of semantic and affective processing in psychopaths. Biological Psychiatry, 42(2), 96103.Google Scholar
Jiang, Y., Guo, X., Zhang, J., Gao, J., Wang, X., Situ, W., Yi, J., Zhang, X., Zhu, X., Yao, S., & Huang, B. (2015). Abnormalities of cortical structures in adolescent-onset conduct disorder. Psychological Medicine, 45(16), 34673479.CrossRefGoogle ScholarPubMed
Joyal, C. C., Putkonen, A., Mancini-Marïe, A., Hodgins, S., Kononen, M., Boulay, L., Pihlajamaki, M., Soininen, H., Stip, E., Tiihonen, J., & Aronen, H. J. (2007). Violent persons with schizophrenia and comorbid disorders: A functional magnetic resonance imaging study. Schizophrenia Research, 91(1–3), 97102.Google Scholar
Juhász, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia, 42(8), 9911001.Google Scholar
Kiehl, K., Kiehl, A., & Hoffman, M. (1991). The Criminal Psychopath: History, Neuroscience, Treatment, and Economics. Jurimetrics Journal of Law, Science and Technology, 51.4, 355.Google Scholar
Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50(9), 677684.Google Scholar
Kolb, B. & Whishaw, I. Q. (2009). Fundamentals of Human Neuropsychology. New York: Worth Publishers.Google Scholar
Kolla, N., Matthews, B., Wilson, A., Houle, S., Michael Bagby, R., et al. (2015). Lower monoamine oxidase-a total distribution volume in impulsive and violent male offenders with antisocial personality disorder and high psychopathic traits: An [11c] harmine positron emission tomography study. Neuropsychopharmacology, 40(11), 25962603.Google Scholar
Kolla, N. J., Dunlop, K., Downar, J., Links, P., Bagby, R. M., Wilson, A. A., Houle, S., Rasquinha, F., Simpson, A. I., & Meyer, J. H. (2016). Association of ventral striatum monoamine oxidase-a binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study. European Neuropsychopharmacology, 26(4), 777786.Google Scholar
Kumari, V., Aasen, I., Taylor, P., Ffytche, D. H., Das, M., Barkataki, I., Goswami, S., O’Connell, P., Howlett, M., Williams, S. C., & Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: An fMRI investigation. Schizophrenia Research, 84(1), 144164.CrossRefGoogle ScholarPubMed
Kumari, V., Uddin, S., Premkumar, P., Young, S., Gudjonsson, G. H., Raghuvanshi, S., Barkataki, I., Sumich, A., Taylor, P., & Das, M. (2014). Lower anterior cingulate volume in seriously violent men with antisocial personality disorder or schizophrenia and a history of childhood abuse. Australian and New Zealand Journal of Psychiatry, 48(2), 153161.CrossRefGoogle ScholarPubMed
Kunz, M., Sikora, J., Krakowski, M., Convit, A., Cooper, T., et al. (1995). Serotonin in violent patients with schizophrenia. Psychiatry Research, 59(1), 161163.Google Scholar
Liu, H., Liao, J., Jiang, W., & Wang, W. (2014). Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI. PLoS ONE, 9(3): e89790.Google Scholar
Ly, M., Motzkin, J. C., Philippi, C. L., Kirk, G. R., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2012). Cortical thinning in psychopathy. American Journal of Psychiatry, 169(7), 743749.CrossRefGoogle ScholarPubMed
McCloskey, M. S., Phan, K. L., Angstadt, M., Fettich, K. C., Keedy, S., & Coccaro, E. F. (2016). Amygdala hyperactivation to angry faces in intermittent explosive disorder. Journal of Psychiatric Research, 79347941.Google Scholar
Moeller, S. J., Froböse, M. I., Konova, A. B., Misyrlis, M., Parvaz, M. A., Goldstein, R. Z., & Alia-Klein, N. (2014). Common and distinct neural correlates of inhibitory dysregulation: Stroop fMRI study of cocaine addiction and intermittent explosive disorder. Journal of Psychiatric Research, 58555862.Google Scholar
Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., Schuierer, G., Klein, H. E., & Hajak, G. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: Evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry 54(2), 152162.Google Scholar
Narayan, V. M., Narr, K. L., Kumari, V., Woods, R. P., Thompson, P. M., Toga, A. W., & Sharma, T. (2007). Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. American Journal of Psychiatry, 164(9), 14181427.Google Scholar
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Reynolds, D., Mitropoulou, V., Sprung, L., Shaw, R. B., Jr., Koenigsberg, H., Platholi, J., Silverman, J., & Siever, L. J. (2002). Blunted prefrontal cortical¹⁸ fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Archives of General Psychiatry, 59(7), 621629.Google Scholar
New, A. S., Buchsbaum, M. S., Hazlett, E. A., Goodman, M., Koenigsberg, H. W., Lo, J., Iskander, L., Newmark, R., Brand, J., O’Flynn, K., & Siever, L. J. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology, 176(3–4), 451458.Google Scholar
New, A. S., Hazlett, E. A., Newmark, R. E., Zhang, J., Triebwasser, J., Meyerson, D., Lazarus, S., Trisdorfer, R., Goldstein, K. E., Goodman, M., Koenigsberg, H. W., Flory, J. D., Siever, L. J., & Buchsbaum, M. S. (2009). Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biological Psychiatry, 66(12), 11071114.Google Scholar
Osumi, T., Nakao, T., Kasuya, Y., Shinoda, J., Yamada, J., & Ohira, H. (2012). Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population. Journal of Affective Disorders, 142(1–3), 331338.CrossRefGoogle Scholar
Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75(1), 7380.Google Scholar
Philippi, C. L., Pujara, M. S., Motzkin, J. C., Newman, J., Kiehl, K. A., & Koenigs, M. (2015). Altered resting-state functional connectivity in cortical networks in psychopathy. The Journal of Neuroscience, 35(15), 60686078.Google Scholar
Prehn, K., Schlagenhauf, F., Schulze, L., Berger, C., Vohs, K., Fleischer, M., Hauenstein, K., Keiper, P., Domes, G., & Herpertz, S. C. (2013). Neural correlates of risk taking in violent criminal offenders characterized by emotional hypo- and hyper-reactivity. Social Neuroscience, 8(2), 136147.Google Scholar
Raine, A., Buchsbaum, M., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42(6), 495508.CrossRefGoogle ScholarPubMed
Raine, A., Stoddard, J., Bihrle, S., & Buchsbaum, M. (1998). Prefrontal glucose deficits in murderers lacking psychosocial deprivation. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 11(1), 17.Google Scholar
Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences and the Law, 16(3), 319332.Google Scholar
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57(2), 119127.Google Scholar
Raine, A., Yang, Y., Narr, K., & Toga, A. (2009). Sex differences in orbitofrontal gray as a partial explanation for sex differences in antisocial personality. Molecular Psychiatry, 16(2), 227.Google Scholar
Seara-Cardoso, A., Viding, E., Lickley, R. A., & Sebastian, C. L. (2015). Neural responses to others’ pain vary with psychopathic traits in healthy adult males. Cognitive, Affective & Behavioral Neuroscience, 15(3), 578588.Google Scholar
Schiffer, B., Pawliczek, C., Müller, B., Forsting, , Gizewski, M., Leygraf, E., , N., & Hodgins, S. (2014). Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior. Psychiatry Research: Neuroimaging, 222(1–2), 4351.Google Scholar
Schlüter, T., Winz, O., Henkel, K., Eggermann, T., Mohammadkhani-Shali, S., Dietrich, C., Heinzel, A., Decker, M., Cumming, P., Zerres, K., Piel, M., Mottaghy, F. M., & Vernaleken, I. (2016). MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage, 125378125385.Google Scholar
Soderstrom, H., Tullberg, M., Wikkelsö, C., Ekholm, S., & Forsman, A. (2000). Reduced regional cerebral blood flow in non-psychotic violent offenders. Psychiatry Research: Neuroimaging, 98(1), 2941.Google Scholar
Spoont, M. R., Kuskowski, M., & Pardo, J. V. (2010). Autobiographical memories of anger in violent and non-violent individuals: A script-driven imagery study. Psychiatry Research: Neuroimaging, 183(3), 225229.Google Scholar
Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal Neural Responses to Emotional Visual Stimuli in Adolescents with Conduct Disorder. Biological Psychiatry, 57(1), 715.Google Scholar
Tang, Y., Yang, L., Leve, L. D., & Harold, G. T. (2012). Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: Advances within the field of developmental neuroscience. Child Development Perspectives, 6(4), 361366.Google Scholar
Tiihonen, J., Rossi, R., Laakso, M. P., Hodgins, S., Testa, C., Perez, J., & Frisoni, G. B. (2008). Brain anatomy of persistent violent offenders: More rather than less. Psychiatry Research: Neuroimaging, 163(3), 201212.Google Scholar
Tiihonen, J., Rautiainen, M., Ollila, H. M., Repo-Tiihonen, E., Virkkunen, M., Palotie, A., Pietiläinen, O., Kristiansson, K., Joukamaa, M., Lauerma, H., Saarela, J., Tyni, S., Vartiainen, H., Paananen, J., Goldman, D., & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20(6), 786792.Google Scholar
Trzepacz, P. T., Yu, P., Bhamidipati, P. K., Willis, B., Forrester, T., Tabas, L., Schwarz, A. J., Saykin, A. J.; Alzheimer's Disease Neuroimaging Initiative & Saykin, A. J. (2013). Frontolimbic atrophy is associated with agitation and aggression in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 9(5), S95–S104.CrossRefGoogle ScholarPubMed
Virkkunen, M. & Linnoila, M. (1993). Brain serotonin, type II alcoholism and impulsive violence. Journal of Studies on Alcohol, 54, 163165.Google Scholar
Volkow, N. D., Tancredi, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., Wang, G.-J., & Hollister, L. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research: Neuroimaging, 61(4), 243253.Google Scholar
Völlum, B., Richarson, P., Stirling, J., Elliott, R., Dolan, M., Chaudhry, I., & Del Ben, C., McKie, S., Anderson, I., & Deakin, B. (2004). Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Criminal Behaviour and Mental Health, 14(1), 3954.Google Scholar
Völlum, B., Richardson, P., McKie, S., Reniers, R., Elliott, R., Anderson, I. M., Williams, S., Dolan, M., & Deakin, B. (2010). Neuronal correlates and serotonergic modulation of behavioural inhibition and reward in healthy and antisocial individuals. Journal of Psychiatric Research, 44(3), 123131.Google Scholar
Yang, Y., Glenn, A. L., & Raine, A. (2008). Brain abnormalities in antisocial individuals: Implications for the law. Behavioral Sciences and the Law, 26(1), 6583.Google Scholar
Yang, Y., Raine, A., Colletti, P., Toga, A. W., & Narr, K. L. (2009). Abnormal temporal and prefrontal cortical gray matter thinning in psychopaths. Molecular Psychiatry, 14(6), 561562.Google Scholar
Yang, Y., Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2005). Volume Reduction in Prefrontal Gray Matter in Unsuccessful Criminal Psychopaths. Biological Psychiatry, 57(10), 11031108.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×