Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T23:16:42.862Z Has data issue: false hasContentIssue false

3 - Sociality in Bees

from Part I - Invertebrates

Published online by Cambridge University Press:  13 April 2017

Dustin R. Rubenstein
Affiliation:
Columbia University, New York
Patrick Abbot
Affiliation:
Vanderbilt University, Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, J. & Eickwort, G. C. (1981) Nest switching and guarding by the communal sweat bee Agapostemon virescens (Hymenoptera, Halictidae). Insectes Sociaux, 28, 105116.Google Scholar
Alcock, J. (1980) Natural selection and the mating systems of solitary bees. American Scientist, 68, 146153.Google Scholar
Alcock, J. (1996) The relation between male body size, fighting, and mating success in Dawson’s burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). Journal of Zoology, 239, 663674.Google Scholar
Alexander, R. D. (1974) The evolution of social behavior. Annual Review of Ecology and Systematics, 5, 325383.Google Scholar
Alexander, R. D., Noonan, K. M., & Crespi, B. J. (1991) The evolution of eusociality. In: Sherman, P. W., Jarvis, J. U. M., & Alexander, R. D. (eds.) The Biology of the Naked Mole Rat. Princeton, NJ: Princeton University Press, pp. 344.Google Scholar
Amdam, G. V., Fennern, E., & Havukainen, H. (2012) Vitellogenin in honey bee behavior and lifespan. In: Galizia, G., Eisenhardt, D., & Giurfa, M. (eds.) Honeybee Neurobiology and Behavior. Netherlands: Springer, pp. 1729.Google Scholar
Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M., & Degrandi-Hoffman, G. (2011) An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux, 58, 431444.Google Scholar
Arias, M. C. & Sheppard, W. S. (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 5, 557566.Google Scholar
Arias, M. C. & Sheppard, W. S. (2005) Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37, 2535.Google Scholar
Ayasse, M. & Paxton, R. J. (2002) Brood protection in social insects. In: Hilker, M. & Meiners, T. (eds.) Chemoecology of Insects Eggs and Egg Deposition. Berlin: Blackwell, pp. 117148.Google Scholar
Ayasse, M., Paxton, R. J. & Tengö, J. (2001) Mating behavior and chemical communication in the order Hymenoptera. Annual Review of Entomology, 46, 3178.Google Scholar
Baer, B. & Schmid-Hempel, P. (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution, 55, 16391643.Google Scholar
Bateman, A. J. (1948) Intra-sexual selection in Drosophila. Heredity, 2, 249368.Google Scholar
Batra, S. W. T. (1966) Social behavior and nests of some nomiine bees in India (Hymenoptera, Halictidae). Insectes Sociaux, 13, 145154.Google Scholar
Beshers, S. N. & Fewell, J. H. (2001) Models of division of labor in social insects. Annual Review of Entomology, 46, 413440.Google Scholar
Boomsma, J. J., Beekman, M., Cornwallis, C. K., Griffin, A. S., Holman, L., et al. (2011) Only full-sibling families evolved eusociality. Nature, 471, E4E5.Google Scholar
Bosch, J. & Vicens, N. (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behavioral Ecology and Sociobiology, 60, 2633.Google Scholar
Brady, S. G., Sipes, S., Pearson, A., & Danforth, B. N. (2006) Recent and simultaneous origins of eusociality in halictid bees. Proceedings of the Royal Society of London B, 273, 16431649.Google Scholar
Breed, M. D. (1998) Chemical cues in kin-recognition: Criteria for identification, experimental approaches, and the honey bee as an example. In: Vander Meer, R. K., Breed, M. D., Espelie, K. E., & Winston, M. L. (eds.) Pheromone Communication in Social Insects. Boulder: Westview Press, pp. 5778.Google Scholar
Breed, M. D., Guzmán-Novoa, E., & Hunt, G. J. (2004) Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Reviews in Entomology, 49, 271298.Google Scholar
Bromley, S. W. (1948) Honey-bee predators. Journal of the New York Entomological Society, 56, 195199.Google Scholar
Buchwald, R. & Breed, M. D. (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Animal Behaviour, 70, 13311337Google Scholar
Cameron, S. A. & Mardulyn, P. (2001) Multiple molecular data sets suggest independent origins of highly eusocial behavior in bees (Hymenoptera: Apinae). Systematic Biology, 50, 194214.Google Scholar
Cardinal, S. & Danforth, B. N. (2011) The antiquity and evolutionary history of social behavior in bees. PLoS ONE, 6, e21086.Google Scholar
Cardinal, S. & Danforth, B. N. (2013) Bees diversified in the age of eudicots. Proceedings of the Royal Society of London B, 280, 20122686.Google Scholar
Carlin, N. F. & Frumhoff, P. C. (1990) Nepotism in the honey bee. Nature, 346, 706707.Google Scholar
Cartar, R. V. & Dill, L. M. (1990) Colony energy requirements affect the foraging currency of bumblebees. Behavioral Ecology and Sociobiology, 27, 377383.Google Scholar
Châline, N., Martin, S. J., & Ratnieks, F. L. (2005) Absence of nepotism toward imprisoned young queens during swarming in the honey bee. Behavioral Ecology, 16, 403409.Google Scholar
Costa, J. T. & Fitzgerald, T. D. (2005) Social terminology revisited: Where are we ten years later? Annales Zoologici Fennici, 42, 559564.Google Scholar
Crozier, R. H., Smith, B. H., & Crozier, Y. C. (1987) Relatedness and population structure of the primitively eusocial bee Lasioglossum zephyrum (Hymenoptera: Halictidae) in Kansas. Evolution, 41, 902910.Google Scholar
Danforth, B. N. (1991a) Female foraging and intranest behavior of a communal bee, Perdita portalis (Hymenoptera: Andrenidae). Annals of the Entomological Society of America, 84, 537548.Google Scholar
Danforth, B. N. (1991b) The morphology and behavior of dimorphic males in Perdita portalis (Hymenoptera: Andrenidae). Behavioral Ecology and Sociobiology, 29, 235247.Google Scholar
Danforth, B. N. (2002) Evolution of sociality in a primitively lineage of bees. Proceedings of the National Academy of Sciences USA, 99, 286290.Google Scholar
Danforth, B. N., Conway, L. & Ji, S. (2003) Phylogeny of eusocial Lasioglossum reveals multiple losses of eusociality within a primitively eusocial clade of bees (Hymenoptera: Halictidae). Systematic Biology, 52, 2336.CrossRefGoogle ScholarPubMed
Danforth, B. N., Brady, S. G., Sipes, S. D., & Pearson, A. (2004) Single-copy nuclear genes recover Cretaceous-age divergences in bees. Systematic Biology, 53, 309326.Google Scholar
Danforth, B. N., Sipes, S., Fang, J., & Brady, S. G. (2006) The history of early bee diversification based on five genes plus morphology. Proceedings of the National Academy of Sciences USA, 103, 1511815123.Google Scholar
Danforth, B. N., Cardinal, S., Praz, C., Almeida, E. A. B., & Michez, D. (2013) The impact of molecular data our understanding of bee phylogeny and evolution. Annual Review of Entomology, 58, 5778.Google Scholar
Dani, F. R., Fratini, S., & Turillazzim, S. (1996) Behavioural evidence for the involvement of Dufour’s gland secretion in nestmate recognition in the social wasp Polistes dominulus (Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 38, 311319.Google Scholar
Dew, R. M., Tierney, S. M., & Schwarz, M. P. (2015) Social evolution and casteless societies: Needs for new terminology and a new evolutionary focus. Insectes Sociaux, 1, 5-14.Google Scholar
Dornhaus, A. & Chittka, L. (1999) Insect behaviour: Evolutionary origins of bee dances. Nature, 401, 38.Google Scholar
Dornhaus, A., Powell, S., & Bengston, S. (2012) Group size and its effects on collective organization. Annual Review of Entomology, 57, 123141.CrossRefGoogle ScholarPubMed
Dunn, T. & Richards, M. H. (2003) When to bee social: Interactions among environmental constraints, incentives, guarding, and relatedness in a facultatively social carpenter bee. Behavioral Ecology, 14, 417424.Google Scholar
Dyer, F. C. (2002) The biology of the dance language. Annual Review of Entomology, 47, 917949.Google Scholar
Eberhard, W. G. & Wcislo, W. T. (2011) Grade changes in brain–body allometry: Morphological and behavioural correlates of brain size in miniature spiders, insects and other invertebrates. Advances in Insect Physiology, 40, 155.Google Scholar
Eickwort, G. C. & Kukuk, P. F. (1990) The relationship between nest architecture and sociality in halictine bees. In: Veeresh, G. K., Mallik, B. & Viraktamath, C. A. (eds.) Social Insects and the Environment. New Dehli: Oxford & IBH Publishing Co. pp. 664665.Google Scholar
Eickwort, G. C., Eickwort, J. M., Gordon, J., Eickwort, M. A., & Wcislo, W. T. (1996) Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 38, 227233.Google Scholar
Engel, P. & Moran, N. A. (2013) The gut microbiota of insects: Diversity in structure and function. FEMS Microbiology Reviews, 37, 699735.Google Scholar
Evans, H. E. (1977) Commentary: Extrinsic versus intrinsic factors in the evolution of insect sociality. Bioscience, 27, 613617.Google Scholar
Farris, S. M. (2013) Evolution of complex higher brain centers and behaviors: Behavioral correlates of mushroom body elaboration in insects. Brain, Behavior and Evolution, 82, 918.Google Scholar
Fewell, J. H. (2003) Social insect networks. Science, 301, 18671870.Google Scholar
Fewell, J. H. & Winston, M. L. (1992) Colony state and regulation of pollen foraging in the honey bee, Apis mellifera L. Behavioral Ecology and Sociobiology, 30, 387393.Google Scholar
Fewell, J. H., Schmidt, S. K., & Taylor, T. (2009) Division of labor in the context of complexity. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge, MA: Harvard University Press, pp. 483502.Google Scholar
Field, J., Paxton, R. J., Soro, A., & Bridge, C. (2010) Cryptic plasticity underlies a major evolutionary transition. Current Biology, 20, 20282031.Google Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Oxford: Clarendon Press.Google Scholar
Fletcher, D. J. C. & Michener, C. D. (eds.) (1987) Kin Recognition in Animals. Chichester: Wiley.Google Scholar
Flores-Prado, L. (2012) Evolución de la sociabilidad en hymenopteras: Rasgos conductuales vinculados a niveles sociales y precursors de sociabilidad en especies solitarias. Revista Chilena de Historia Natural, 85, 245266.Google Scholar
Frohlich, D. R. & Tepedino, V. J. (1986) Sex ratio, parental investment, and interparent variability in nesting success in a solitary bee. Evolution, 40, 142151.Google Scholar
Gadagkar, R. (1991) Demographic predisposition to the evolution of eusociality: A hierarchy of models. Proceedings of the National Academy of Sciences USA, 88, 1099310997.CrossRefGoogle Scholar
Gerling, D., Velthuis, H. H. W., & Hefetz, A. (1989) Bionomics of the large carpenter bees of the genus Xylocopa. Annual Review of Entomology, 34, 163190.CrossRefGoogle Scholar
Gibbs, J., Brady, S. G., Kanda, K., & Danforth, B. N. (2012) Phylogeny of halictine bees supports a shared origin of eusociality for Halictus and Lasioglossum (Apoidea: Anthophila: Halictidae). Molecular and Phylogenetic Evolution, 65, 926939.Google Scholar
Gronenberg, W. & Riveros, A. J. (2009) Social brains and behavior: Past and present. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge: Harvard University Press, pp. 377401.Google Scholar
Grüter, C., Kärcher, M. H., & Ratnieks, F. L. W. (2011) The natural history of nest defence in a stingless bee, Tetragonisca angustula (Latreille) (Hymenoptera: Apidae), with two distinct types of entrance guards. Neotropical Entomology, 40, 5561.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7, 1752.Google Scholar
Hamilton, W. D. (1972) Altruism and related phenomena, mainly in social insects. Annual Review of Ecology and Systematics, 3, 193232.Google Scholar
Harrison, J. F., Woods, H. A., & Roberts, S. P. (2012) Ecological and Environmental Physiology of Insects. Oxford: Oxford University Press.Google Scholar
Heinrich, B. (1985) The social physiology of temperature regulation in honeybees. In: Hölldobler, B. & Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Sunderland, MA: Sinauer, pp. 393406.Google Scholar
Heinrich, B. (2004) Bumblebee Economics. Cambridge, MA: Harvard University Press.Google Scholar
Hepburn, H. R. & Radloff, S. E. (2011a) Biogeography of the dwarf honeybees, Apis andreniformis and Apis florea. Apidologie, 42, 293300.Google Scholar
Hepburn, H. R. & Radloff, S. E. (2011b) Honeybees of Asia. Berlin: Springer.Google Scholar
Hines, H. M. (2008) Historical biogeography, divergence times, and diversification patterns of bumblebees (Hymenoptera: Apidae: Bombus). Systematic Biology, 57, 5875.Google Scholar
Hogendoorn, K. & Velthuis, H. H. W. (1999) Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size. Insectes Sociaux, 46, 198207.Google Scholar
Holbrook, C. T., Clark, R. M., Jeanson, R., Bertram, S. M., Kukuk, P. F., et al. (2009) Emergence and consequences of division of labor in associations of normally solitary sweat bees. Ethology, 115, 301310.Google Scholar
Houston, A., Schmid-Hempel, P., & Kacelnik, A. (1988) Foraging strategy, worker mortality, and the growth of the colony in social insects. The American Naturalist, 131, 107114.Google Scholar
Hunt, J. H. (2007) The Evolution of Social Wasps. Oxford: Oxford University Press.Google Scholar
Hunt, J. H. & Amdam, G. V. (2005) Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science, 308, 264267.Google Scholar
Jaramillo, C. & Cárdenas, A. (2013) Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41, 741766.Google Scholar
Jeanson, R., Kukuk, P. F., & Fewell, J. H. (2005) Emergence of division of labour in halictine bees: Contributions of social interactions and behavioural variance. Animal Behaviour, 70, 11831193.Google Scholar
Johnson, M. D. (1988) The relationship of provision weight to adult weight and sex ratio in the solitary bee, Ceratina calcarata. Ecological Entomology, 13, 165170.Google Scholar
Kapheim, K. M., Nonacs, P., Smith, A. R., Wayne, R. K., & Wcislo, W. T. (2015) Kinship, parental manipulation and evolutionary origins of eusociality. Proceedings of the Royal Society of London B, 282, 20142886.Google Scholar
Ken, T., Hepburn, H. R., Radloff, S. E., Yusheng, Y., Yiqiu, L., et al. (2005) Heat-balling wasps by honeybees. Naturwissenschaften, 92, 492495.Google Scholar
Kocher, S. D. & Paxton, R. J. (2014) Comparative methods offer powerful insights into social evolution in bees. Apidologie, 45, 289305.Google Scholar
Kukuk, P. F. & Schwarz, M. (1987) Intranest behavior of the communal sweat bee Lasioglossum (Chilalictus) erythrurum (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 60, 5864.Google Scholar
Kukuk, P. F., Bitney, C. & Forbes, S. H. (2005) Maintaining low intragroup relatedness: Evolutionary stability of nonkin social groups. Animal Behaviour, 70, 13051311.Google Scholar
Lenoir, A., d’Ettorre, P., Errard, C., & Hefetz, A. (2001) Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46, 573599.Google Scholar
Lin, N. & Michener, C. D. (1972) Evolution of sociality in insects. Quarterly Review of Biology, 47, 131159.Google Scholar
Linsenmair, K. E. (1987) Kin recognition in subsocial arthropods, in particular the desert isopod Hemilepistus reaumuri. In: Fletcher, D. J. C. & Michener, C. D. (eds.) Kin Recognition in Animals. New York: John Wiley, pp. 121208.Google Scholar
Linsley, E. (1958) The ecology of solitary bees. Hilgardia, 27, 543599.Google Scholar
Malyshev, S. I. (1968) Genesis of the Hymenoptera and the Phases of their Evolution. Republished by Springer Online (2012).Google Scholar
McFrederick, Q., Wcislo, W., Hout, M., Mueller, U. 2014. Host developmental stage, not host sociality, affects bacterial community structure in socially polymorphic bee. FEMS Microbiology Ecology 88: 398406.Google Scholar
Michener, C. D. (1954) Bees of Panama. Bulletin of the American Museum Natural History, 104, 1176.Google Scholar
Michener, C. D. (1958) The evolution of social behavior in bees. Proceedings of the 10th International Congress of Entomology, 2, 441447.Google Scholar
Michener, C. D. (1964) Evolution of the nests of bees. American Zoologist, 4, 227239.CrossRefGoogle Scholar
Michener, C. D. (1969) Comparative social behavior of bees. Annual Review of Entomology, 14, 299342.Google Scholar
Michener, C. D. (1974) The Social Behavior of the Bees: A Comparative Study. Cambridge, MA: Harvard University Press.Google Scholar
Michener, C. D. (1977) Discordant evolution and the classification of allodapine bees. Systematic Zoology, 26, 3256.Google Scholar
Michener, C. D. (1985) From solitary to eusocial: Need there be a series of intervening species? In: Holldobler, B. & Lindauer, M. (eds.) Experimental Behavioral Ecology and Sociobiology. Stuttgart: Fischer, pp. 293305.Google Scholar
Michener, C. D. (1990) Reproduction and castes in social halictine bees. In: Engels, W. (ed.) Social Insects. Berlin: Springer, pp. 77121Google Scholar
Michener, C. D. (2007) The Bees of the World, 2nd Edition. Baltimore: Johns Hopkins University Press.Google Scholar
Minckley, R. L., Wcislo, W. T., Yanega, D., & Buchmann, S. L. (1994) Behavior and phenology of a specialist bee (Dieunomia) and sunflower (Helianthus) pollen availability. Ecology, 75, 14061419.Google Scholar
Moldenke, A. R. (1979) Host–plant coevolution and the diversity of bees in relation to the flora of North America. Phytology, 43, 357419Google Scholar
Moore, A. J. & Kukuk, P. F. (2002) Quantitative genetic analysis of natural populations. Nature Reviews Genetics, 3, 971978.CrossRefGoogle ScholarPubMed
Moran, N. A. (2015) Genomics of the honey bee microbiome. Current Opinion in Insect Science, 10, 2228.CrossRefGoogle ScholarPubMed
Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006) Phylogeny of the ants: Diversification in the age of angiosperms. Science, 312, 101104.Google Scholar
Mueller, U. G. (1991) Haplodiploidy and the evolution of facultative sex ratios in a primitively eusocial bee. Science, 254, 442444.Google Scholar
Müller, H. (1872) Anwendung der Darwinschen Lehre auf Bienen. Verhhandlungen des naturhistorischen Vereines der preussischen Rheinlande und Westphalens, 29, 196.Google Scholar
Nieh, J. C. (1999) Stingless-bee communication. American Scientist, 87, 428435.Google Scholar
Nieh, J. C., Kruizinga, K., Barreto, L. S., Contrera, F. A. L., & Imperatriz-Fonseca, V. L. (2005) Effect of group size on the aggression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Sociaux, 52, 147154.Google Scholar
Noll, F. B., Zucchi, R., Jorge, J. A., & Mateus, S. (1996) Food collection and maturation in the necrophagous stingless bee, Trigona hypogea (Hymenoptera: Meliponinae). Journal of the Kansas Entomological Society, 69, 287293.Google Scholar
O’Donnell, S., Bulova, S. J., DeLeon, S., Khodak, P., Miller, S., et al. (2015) Distributed cognition and social brains: Reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proceedings of the Royal Society of London B, 282, 20150791Google Scholar
Oldroyd, B. P. & Fewell, J. H. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends in Ecology and Evolution 22, 408413.Google Scholar
O’Neil, K. M. (2001) Solitary Wasps. Behavior and Natural History. Ithaca: Comstock Publishing Associates.Google Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and Ecology in the Social Insects. Princeton: Princeton University Press.Google Scholar
Packer, L. & Owen, R. E. (1994) Relatedness and sex ratio in a primitively eusocial halictine bee. Behavioral Ecology and Sociobiology, 34, 110.Google Scholar
Page, R. E. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.). Genetics, 96, 263273.Google Scholar
Page, R. E., Robinson, G. E., & Fondrk, M. K. (1989) Genetic specialists, kin recognition and nepotism in honey-bee colonies. Nature, 338, 576579.Google Scholar
Palmer, K. A. & Oldroyd, B. P. (2000) Evolution of multiple mating in the genus Apis. Apidologie, 31, 235248.Google Scholar
Pankiw, T., Page, R. E., & Fondrk, M. K. (1998) Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behavioral Ecology and Sociobiology, 44, 193198.Google Scholar
Paxton, R. J. (2005) Male mating behaviour and mating systems of bees: An overview. Apidologie, 36, 145156.Google Scholar
Paxton, R. J., Thorén, P. A., Tengö, J., Estoup, A., & Pamilo, P. (1996) Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Molecular Ecology, 5, 511519.Google Scholar
Paxton, R. J., Kukuk, P. F., & Tengö, J. (1999) Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae). Insectes Sociaux, 46, 109118.Google Scholar
Peters, J. M., Queller, D. C., Imperatriz-Fonseca, V. L., Roubik, D. W. & Strassmann, J. E. (1999) Mate number, kin selection and social conflicts in stingless bees and honeybees. Proceedings of the Royal Society of London B, 266, 379384.Google Scholar
Plateaux-Quénu, C., Plateaux, L., & Packer, L. (2000) Population-typical behaviours are retained when eusocial and non-eusocial forms of Evylaeus albipes (F.) (Hymenoptera, Halictidae) are reared simultaneously in the laboratory. Insectes Sociaux, 47, 263270.Google Scholar
Prager, S. M. (2014) Comparison of social and solitary nesting carpenter bees in sympatry reveals no advantage to social nesting. Biological Journal of the Linnean Society, 113, 9981010.Google Scholar
Queller, D. C. & Strassmann, J. E. (1998) Kin selection and social insects. Bioscience, 48, 165175.Google Scholar
Ratnieks, F. L. & Visscher, P. K. (1989) Worker policing in the honeybee. Nature, 342, 796797.Google Scholar
Rehan, S. M., Leys, R., & Schwarz, M. P. (2012) A mid-Cretaceous origin of sociality in Xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLoS ONE, 7, e34690.Google Scholar
Rehan, S. M., Richards, M. H., Adams, M., & Schwarz, M. P. (2014) The costs and benefits of sociality in a facultatively social bee. Animal Behaviour, 97, 7785.CrossRefGoogle Scholar
Richards, M. H. (2000) Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Canadian Journal of Zoology, 78, 12591266.Google Scholar
Rosenheim, J. A. (1990) Density-dependent parasitism and the evolution of aggregated nesting in the solitary Hymenoptera. Annals of the Entomological Society of America, 83, 277286.Google Scholar
Roubik, D. W. (1982) Seasonality in colony food storage, brood production and adult survivorship: Studies of Melipona in tropical forest (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 55, 789800.Google Scholar
Roubik, D. W. (1989) Ecology and Natural History of Tropical Bees. Cambridge: Cambridge University Press.Google Scholar
Roubik, D. W. (2006) Stingless bee nesting biology. Apidologie, 37, 124143.Google Scholar
Roubik, D. W. (2012) Ecology and Social Organization of Bees. In: eLS. Chichester: John Wiley & Sons Ltd, www.els.net.Google Scholar
Roubik, D. W. & Ackerman, J. D. (1987) Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama. Oecologia, 73, 321333.Google Scholar
Sakagami, S.F. & Michener, C. D. (1962) The Nest Architecture of the Sweat Bees (Halictinae): A Comparative Study of Behavior. Lawrence, Kansas: University of Kansas Press.Google Scholar
Schmickl, T. & Crailsheim, K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie, 35, 249263.Google Scholar
Schmid-Hempel, P. (1998) Parasites in Social Insects. Princeton: Princeton University Press.Google Scholar
Schmid-Hempel, R. & Schmid-Hempel, P. (2000) Female mating frequencies in Bombus spp. from Central Europe. Insectes Sociaux, 47, 3641.Google Scholar
Schlüns, H., Moritz, R. F., Neumann, P., Kryger, P., & Koeniger, G. (2005) Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Animal Behaviour, 70, 125131.Google Scholar
Schürch, R., Accleton, C., & Field, J. (2016) Consequences of a warming climate for social organisation in sweat bees. Behavioral Ecology and Sociobiology, 70, 11311139.Google Scholar
Schwarz, M. P., Bull, N. J., & Hogendoorn, K. (1998) Evolution of sociality in the allodapine bees: A review of sex allocation, ecology and evolution. Insectes Sociaux, 45, 349368.Google Scholar
Schwarz, M. P., Tierney, S. M., Zammit, J., Schwarz, P. M., & Fuller, S. (2005) Brood provisioning and colony composition of a Malagasy species of Halterapis: Implications for social evolution in the allodapine bees (Hymenoptera: Apidae: Xylocopinae). Annals of the Entomological Society of America, 98, 126133.Google Scholar
Schwarz, M. P., Richards, M. H. & Danforth, B. N. (2007) Changing paradigms in insect social evolution: Insights from halictine and allodapine bees. Annual Review of Entomology, 52, 127150.Google Scholar
Schwarz, M. P., Tierney, S. M., Rehan, S. M., Chenoweth, L. B., & Cooper, S. J. B. (2011) The evolution of eusociality in allodapine bees: Workers began by waiting. Biological Letters, 7, 277280.Google Scholar
Seeley, T. D. (1994) Honey bee foragers as sensory units of their colonies. Behavioral Ecology and Sociobiology, 34, 5162.Google Scholar
Seeley, T. D. (1997) Honey bee colonies are group-level adaptive units. The American Naturalist, 150, S22-S41.Google Scholar
Seeley, T. D. (2009) The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Cambridge, MA: Harvard University Press.Google Scholar
Seeley, T. D. & Tarpy, D. R. (2007) Queen promiscuity lowers disease within honeybee colonies. Proceedings of the Royal Society of London B, 274, 6772.Google Scholar
Séguret, A., Bernadou, A., & Paxton, R. J. 2016. Facultative social insects can provide insights into the reversal of the longevity/fecundity trade-off across the eusocial insects. Current Opinion in Insect Science 16, 95103.Google Scholar
Shorter, J. R. & Rueppell, O. (2012) A review on self-destructive defense behaviors in social insects. Insectes Sociaux, 59, 110.Google Scholar
Smith, A. R., Kapheim, K. M., O’Donnell, S. & Wcislo, W. T. (2009) Social competition but not subfertility leads to a division of labour in the facultatively social sweat bee Megalopta genalis (Hymenoptera: Halictidae). Animal Behaviour, 78, 10431050.Google Scholar
Smith, A. R., Seid, M. A., Jimenez, L. & Wcislo, W. T. (2010) Socially induced brain development in the mushroom bodies of a facultatively social sweat bee Megalopta genalis. Proceedings of the Royal Society Series B, 277, 21572163.Google Scholar
Soro, A., Field, J., Bridge, C., Cardinal, S. C. & Paxton, R. J. (2010) Genetic differentiation across the social transition in socially polymorphic sweat bee, Halictus rubicundus. Molecular Ecology, 19, 33513363.Google Scholar
Soucy, S. L. (2002) Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Annals of the Entomological Society of America, 95, 5765.Google Scholar
Soucy, S. L. & Danforth, B. N. (2002) Phylogeography of the socially polymorphic sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Evolution, 56, 330341.Google Scholar
Southwick, E. E. (1983) The honey bee cluster as a homeothermic superorganism. Comparative Biochemistry and Physiology A, 75, 641645.Google Scholar
Southwick, E. E., Roubik, D. W., & Williams, J. M. (1990) Comparative energy balance in groups of Africanized and European honey bees: Ecological implications. Comparative Biochemistry and Physiology A, 97, 17.Google Scholar
Starks, P. T. & Gilley, D. C. (1999) Heat shielding: A novel method of colonial thermoregulation in honey bees. Naturwissenschaften, 86, 438440.Google Scholar
Starks, P. T., Johnson, R. N., Siegel, A. J., & Decelle, M. M. (2005) Heat shielding: A task for youngsters. Behavioral Ecology, 16, 128132.Google Scholar
Stow, A., Briscoe, D., Gillings, M., Holley, M., Smith, S., et al. (2007) Antimicrobial defences increase with sociality in bees. Biological Letters, 3, 422424.Google Scholar
Strassmann, J. (2001) The rarity of multiple mating by females in the social Hymenoptera. Insectes Sociaux, 48, 113.Google Scholar
Strausfeld, N. J., Buschbeck, E. K., & Gomez, R. S. (1995) The arthropod mushroom body: Its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach, O. & Kutsch, W. (eds.) The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Basel: Birkhäuser, pp. 349381.Google Scholar
Strohm, E. & Bordon-Hauser, A. (2003) Advantages and disadvantages of large colony size in a halictid bee: The queen’s perspective. Behavioral Ecology, 14, 546553.Google Scholar
Tarpy, D. R. (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings of the Royal Society of London B, 270, 99103.Google Scholar
Tarpy, D. R., Gilley, D. C., & Seeley, T. D. (2004) Levels of selection in a social insect: A review of conflict and cooperation during honey bee (Apis mellifera) queen replacement. Behavioral Ecology and Sociobiology, 55, 513523.Google Scholar
Thorne, B. L. (1997) Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 2754.Google Scholar
Tierney, S. M., Smith, J. A., Chenoweth, L., & Schwarz, M. P. (2008). Phylogenetics of allodapine bees: A review of social evolution, parasitism and biogeography. Apidologie, 39, 315.Google Scholar
Trivers, R. L. & Hare, H. (1976) Haploidploidy and the evolution of the social insect. Science, 191, 249263.Google Scholar
Ulrich, Y., Perrin, N., & Chapuisat, M. (2009) Flexible social organization and high incidence of drifting in the sweat bee, Halictus scabiosae. Molecular Ecology, 18, 17911800.Google Scholar
von Frisch, K. (1967) The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University PressGoogle Scholar
Wcislo, W. T. (1987) The role of learning in the mating biology of a sweat bee Lasioglossum zephyrum (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 20, 179185.Google Scholar
Wcislo, W. T. (1992) Attraction and learning in mate-finding by solitary bees, Lasioglossum (Dialictus) figueresi Wcislo and Nomia triangulifera Vachal (Hymenoptera: Halictidae). Behavioral Ecology and Sociobiology, 31, 139148.Google Scholar
Wcislo, W. T. (1997) Are behavioral classifications blinders to studying natural variation?. In: Choe, J. C. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge: Cambridge University Press, pp. 8-13.Google Scholar
Wcislo, W. T. (2005) Social labels: We should emphasize biology over terminology and not vice versa. Annales Zoologici Fennici, 42, 565568.Google Scholar
Wcislo, W. T. & Cane, J. H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annual Review of Entomology, 41, 257286.Google Scholar
Wcislo, W. T. & Danforth, B. N. (1997) Secondarily solitary: The evolutionary loss of social behavior. Trends in Ecology and Evolution, 12, 468474.Google Scholar
Wcislo, W. T. & Engel, M. S. (1996) Social behavior and nest architecture of nomiine bees (Hymenoptera: Halictidae; Nomiinae). Journal of the Kansas Entomological Society, 69, 158167.Google Scholar
Wcislo, W. T. & Tierney, S. M. (2009) The evolution of communal behavior in bees and wasps: An alternative to eusociality. In: Gadau, J. & Fewell, J. H. (eds.) Organization of Insect Societies: From Genome to Sociocomplexity, Cambridge, MA: Harvard University Press, pp. 148169.Google Scholar
Wcislo, W. T., Wille, A. & Orozco, E. (1993) Nesting biology of tropical solitary and social sweat bees, Lasioglossum (Dialictus) figueresi Wcislo and L.(D.) aeneiventre (Friese) (Hymenoptera: Halictidae). Insectes Sociaux, 40, 2140.Google Scholar
Wcislo, D., Vargas, G., Ihle, K., & Wcislo, W. (2012) Nest construction behavior by the orchid bee Euglossa hyacinthina. Journal of Hymenoptera Research, 29, 1520.Google Scholar
Weidenmüller, A., Kleineidam, C., & Tautz, J. (2002) Collective control of nest climate parameters in bumblebee colonies. Animal Behaviour, 63, 10651071.Google Scholar
Wheeler, W. M. (1928) The Social Insects Their Origin And Evolution. London: Kegan Paul Trench Trubner and Co Ltd.Google Scholar
Wheeler, D. E. (1986) Developmental and physiological determinants of caste in social Hymenoptera: Evolutionary implications. The American Naturalist, 128, 1334.Google Scholar
Whitfield, C. W., Behura, S. K., Berlocher, S.H., Clark, A. G., Johnston, J. S., et al. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera. Science, 314, 642645.Google Scholar
Wille, A. & Orozco, E. (1970). The life cycle and behavior of the social bee Lasioglossum (Dialictus) umbripenne (Hymenoptera: Halictidae). Revista de Biologia Tropical 17, 199245.Google Scholar
Williams, P., Cameron, S. A., Hines, H. M. Cederberg, B., & Rasmont, P. (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie 39: 4674.Google Scholar
Wilson, E. O. (1971) The Insect Societies. Cambridge, MA: Harvard University Press.Google Scholar
Wilson, E. O. & Hölldobler, B. (2005) The rise of the ants: A phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences USA, 102, 74117414.Google Scholar
Winston, M. L. (1991) The Biology of the Honey Bee. Cambridge: Harvard University Press.Google Scholar
Winston, M. L. (1992) The biology and management of Africanized honey bees. Annual Review of Entomology, 37, 173193.Google Scholar
Winston, M. L. & Michener, C. D. (1977) Dual origin of highly social behavior among bees. Proceedings of the National Academy of Sciences USA, 74, 11351137.Google Scholar
Yagi, N. & Hasegawa, E. (2012) A halictid bee with sympatric solitary and eusocial nests offers evidence for Hamilton’s rule. Nature Communications, 3, 939.Google Scholar
Yanega, D. (1990) Philopatry and nest founding in a primitively social bee, Halictus rubicundus. Behavioral Ecology and Sociobiology, 27, 3742.Google Scholar
Yanega, D. (1992) Does mating determine caste in sweat bees? (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 65, 231237.Google Scholar
Yanega, D. (1996) Sex ratio and sex allocation in sweat bees (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 69, 98115.Google Scholar
Yanega, D. (1997) Demography and sociality in halictine bees (Hymenoptera: Halictidae). In: Choe, J. & Crespi, B. J. (eds.) The Evolution of Social Behavior in Insects and Arachnids. Cambridge, MA: Harvard University Press, pp. 293315.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×