Published online by Cambridge University Press: 23 July 2009
INTRODUCTION
For most of this book, the focus has been on the necessity of conducting out-of-sample statistical work to sort between competing models. Models are unfortunately not unique, even when they produce identical results. We thus face the task of choosing the most likely model from the class of logically consistent models using out-of-sample comparisons. But, as detailed in Chapter 3, it is often the case that the gap between the model and the empirical referent does not allow for dispositive tests. Or worse still, the amount or quality of available data precludes out-of-sample testing with statistical methods. In these situations, deriving logical implications of a model is a parsimonious way to test the model when the data are not accommodating.
King, Keohane, and Verba (1994) – henceforth KKV – emphasize the importance of deriving the logical implications of models, and I borrow heavily from their treatment in Chapter 1 of this book. Like KKV, I depend upon examples from physics to demonstrate that logical implications can be an alternative to statistical modeling. The problem, however, is that there are few examples in the social sciences of this approach to testing a model. KKV do not provide an extended example, and to this point, neither have I.
To address this shortcoming, I will return to the problem of nonseparable preferences featured in the Prelude. The focus will, however, shift to a topic that is more interesting to social scientists than recipes for hot fudge sundaes: voter preferences.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.