Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T08:36:34.817Z Has data issue: false hasContentIssue false

6 - Ductile behavior of polycrystalline ice: experimental data and physical processes

Published online by Cambridge University Press:  01 February 2010

Erland M. Schulson
Affiliation:
Dartmouth College, New Hampshire
Paul Duval
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Introduction

Understanding how polar ice sheets interact with the climatic system is of the highest importance to predict sea-level changes. Ice sheets contain information on the climate and the atmospheric composition over the last 800 000 years (EPICA Community Members, 2004). Interpretation of ice core data is directly dependent on the accuracy of ice sheet flow models used for ice core dating. Knowledge of the rheological properties of ice in the low stress conditions of glaciers and polar ice sheets is therefore needed to improve the constitutive laws that are incorporated in flow models. Due to very high viscoplastic anisotropy of the crystal (Chapter 5), ice is considered as a model material to validate micro-macro polycrystal models used to simulate the behavior of anisotropic viscoplastic materials (Gilormini et al., 2001; Lebensohn et al., 2007).

Ice displays a wide range of mechanical properties, including elasticity, visco-elasticity, viscoplasticity, creep rupture and brittle failure (Schulson, 2001). In glaciers and ice sheets, ice is generally treated as a heat-conducting non-linear viscous fluid.

Ice is assumed here to be incompressible. It will be shown that the main effect of hydrostatic pressure on the ductile behavior of ice is to modify the melting temperature of pure ice Tf with dTf /dP ≈ 0.074 ℃/MPa (Lliboutry, 1971).

In this chapter, we focus the analysis on the mechanical behavior of granular glacier ice. We assume that the behavior is ductile without the formation of cracks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, A. (2001). A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Sol., 49, 761–784.CrossRefGoogle Scholar
Alley, R. B. (1988). Fabrics in polar ice sheets: development and prediction. Science, 240, 493–495.CrossRefGoogle ScholarPubMed
Alley, R. B. (1992). Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38, 245–256.CrossRefGoogle Scholar
Alley, R. B. and Woods, G. A. (1996). Impurity influence on normal grain growth in the GISP2 ice core, Greenland. J. Glaciol., 42, 255–260.CrossRefGoogle Scholar
Alley, R. B., Perepezko, J. H. and Bentley, C. R. (1986a). Grain growth in polar ice: I. Theory. J. Glaciol., 32, 415–424.CrossRefGoogle Scholar
Alley, R. B., Perepezko, J. H. and Bentley, C. R. (1986b). Grain growth in polar ice: II. Application. J. Glaciol., 32, 425–433.CrossRefGoogle Scholar
Alley, R. B., Gow, A. J. and Meese, D. A. (1995). Mapping c-axis fabrics to study physical processes in ice. J. Glaciol., 41, 197–203.CrossRefGoogle Scholar
Andrade, E. N.da, C. (1914). The flow of metals under large constant stresses. Proc. R. Soc. London A, 90, 329–340.CrossRefGoogle Scholar
Ashby, M. F. (1966). Work hardening of dispersion-hardened crystals. Phil. Mag., 14, 1157–1178.CrossRefGoogle Scholar
Ashby, M. F. (1970). The deformation of plastically non-homogeneous materials. Phil. Mag., 21, 399–424.CrossRefGoogle Scholar
Ashby, M. F. and Duval, P. (1985). The creep of polycrystalline ice. Cold Reg. Sci. Technol., 11, 285–300.CrossRefGoogle Scholar
Azuma, N. and Higashi, A. (1985). Formation processes of ice fabric pattern in ice sheets. Ann. Glaciol., 6, 130–134.CrossRefGoogle Scholar
Azuma, N., Wang, Y., Mori, K.et al. (2000). Textures and fabrics in the Dome F (Antarctica) ice core. Ann. Glaciol., 29, 163–168.CrossRefGoogle Scholar
Baker, R. W. and Gerberich, W. W. (1979). The effect of crystal size and dispersed-solid inclusions on the activation energy for creep of ice. J. Glaciol., 24, 179–194.CrossRefGoogle Scholar
Barnes, P., Tabor, D. and Walker, J. C. F. (1971). The friction and creep of polycrystalline ice. Proc. R. Soc. London A, 324, 127–155.CrossRefGoogle Scholar
Barrette, P. D. and Jordaan, I. J. (2003). Pressure-temperature effects on the compressive behavior of laboratory-grown and iceberg ice. Cold Reg. Sci. Technol., 36, 25–36.CrossRefGoogle Scholar
Blum, W. and Maier, W. (1999). Harper-Dorn creep – a myth?Phys. Stat. Sol. A, 171, 467–474.3.0.CO;2-8>CrossRefGoogle Scholar
Bouchez, J. L. and Duval, P. (1982). The fabric of polycrystalline ice deformed in simple shear: experiments in torsion, natural deformation and geometrical interpretation. Textures Microstruct., 5, 171–190.CrossRefGoogle Scholar
Budd, W. F. and Jacka, T. H. (1989). A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16, 107–144.CrossRefGoogle Scholar
Castelnau, O., Duval, P., Lebensohn, R. A. and Canova, G. R. (1996a). Viscoplastic modelling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates. J. Geophys. Res., 101 (B6), 13,851–13,868.CrossRefGoogle Scholar
Castelnau, O., Thorsteinsson, Th., Kipfstuhl, J., Duval, P. and Canova, G. R. (1996b). Modelling fabric development along the GRIP ice core, central Greenland. Ann. Glaciol., 23, 194–201.CrossRefGoogle Scholar
Cohen, D. (2000). Rheology of ice at the bed of Engabreen, Norway. J. Glaciol., 46, 611–621.CrossRefGoogle Scholar
Colbeck, S. C. and Evans, R. J. (1973). A flow law for temperate glacier ice. J. Glaciol., 12, 71–86.CrossRefGoogle Scholar
Cole, D. M. (1991). Anelastic straining in polycrystalline ice. In Proceedings of the 6th International Specialty Conference on Cold Regions Engineering, ed. Sodhi, D.. Lebanon, N.H.: American Society of Civil Engineers, pp. 504–518.Google Scholar
Cole, D. M. (1995). A model for the anelastic straining of saline ice subjected to cyclic loading. Phil. Mag. A, 72 (1), 231–248.CrossRefGoogle Scholar
Cole, D. M. (2003). A dislocation-based analysis of the creep of granular ice: preliminary experiments and modeling. Ann. Glaciol., 37, 18–22.CrossRefGoogle Scholar
Cole, D. M. (2004). A dislocation-based model for creep recovery in ice. Phil. Mag., 84, 3217–3234.CrossRefGoogle Scholar
Cole, D. M. and Durell, G. D. (1995). The cyclic loading of saline ice. Phil. Mag., 72, 209–229.CrossRefGoogle Scholar
Cole, D. M. and Durell, G. D. (2001). A dislocation-based analysis of strain history effects in ice. Phil. Mag. A, 81, 1849–1872.CrossRefGoogle Scholar
Cuffey, K. M., Conway, H., Hallet, B., Gades, A. M. and Raymond, C. F. (1999). Interfacial water in polar glaciers and glacier sliding at −17 ℃. Geophys. Res. Lett., 26, 751–754.CrossRefGoogle Scholar
Cuffey, K. M., Thorsteinsson, T. and Waddington, E. D. (2000a). A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105 (B12), 27,889–27,894.CrossRefGoogle Scholar
Cuffey, K. M., Conway, H., Gades, A.et al. (2000b). Deformation properties of subfreezing glacier ice: role of crystal size, chemical impurities, and rock particles inferred from in situ measurements. J. Geophys. Res., 105 (B12), 27,895–27,915.CrossRefGoogle Scholar
Dahl-Jensen, D. and Gundestrup, N. S. (1987). Constitutive properties of ice at Dye 3, Greenland. In The Physical Basis of Ice Sheet Modeling, eds. Waddington, E. D. and Walder, J. S.. Vancouver: IAHS Publication 170, pp. 31–43.Google Scholar
Angelis, M., Steffensen, J. P., Legrand, M., Clausen, H. and Hammer, C. (1997). Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: comparison with east Antarctic records, J. Geophys. Res., 102 (C12), 26,681–26,698.CrossRefGoogle Scholar
Chapelle, S., Castelnau, O., Lipenkov, V. and Duval, P. (1998). Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophys. Res., 103 (B3), 5091–5105.CrossRefGoogle Scholar
Chapelle, S., Milsch, H., Castelnau, O. and Duval, P. (1999). Compressive creep of ice containing a liquid intergranular phase: ratecontrolling processes in the dislocation creep regime. Geophys. Res. Lett., 26, 251–254.CrossRefGoogle Scholar
Delmonte, B., Petit, J. R. and Maggi, V. (2002). Glacial to Holocene implications of the new 27 000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics, 18, 647–660.Google Scholar
Derby, B. (1991). The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater., 39, 955–962.CrossRefGoogle Scholar
Doake, C. S. M. and Wolff, E. W. (1985). Flow law for ice in polar ice sheets. Nature, 314, 255–257.CrossRefGoogle Scholar
Drouin, M. and Michel, B. (1971). Les poussées d'origine thermique exercées par les couverts de glace sur les structures hydrauliques. Rapport S-23, Laboratoire de Mécanique des Glaces, Université Laval, Canada.
Durand, G. and 10 others (2006). Effect of impurities on grain growth in cold ice sheets. J. Geophys. Res., 111, FO1015, 1–18.CrossRefGoogle Scholar
Durham, W. B. and Stern, L. A. (2001). Rheological properties of water ice – Applications to satellites of the outer planets. Ann. Rev. Earth Planet. Sci., 29, 295–330.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H. and Stern, L. A. (1992). Effect of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res., 97 (E12), 20,883–20,897.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H. and Stern, L. A. (1997). Creep of water ices at planetary conditions: a compilation. J. Geophys. Res., 102 (E7), 16,293–16,302.CrossRefGoogle Scholar
Durham, W. B., Stern, L. A. and Kirby, S. H. (2001). Rheology of ice I at low stresses and elevated confining pressure. J. Geophys. Res., 106, 11,031–11,042.CrossRefGoogle Scholar
Duval, P. (1973). Fluage de la glace polycrystalline pour les faibles contraintes. C.R. Acad. Sci. Paris, 277, 703–706.Google Scholar
Duval, P. (1976). Lois de fluage transitoire ou permanent de la glace polycristalline pour divers états de contrainte. Ann. Géophys., IV, 32, 335–350.Google Scholar
Duval, P. (1977). The role of the water content on the creep rate of polycrystalline ice. In Isotopes and Impurities in Snow and Ice. IAHS Publication, 118, 29–33.Google Scholar
Duval, P. (1978). Anelastic behavior of polycrystalline ice. J. Glaciol., 21, 621–628.CrossRefGoogle Scholar
Duval, P. (1981). Creep and fabrics of polycrystalline ice under shear and compression. J. Glaciol., 27, 129–140.CrossRefGoogle Scholar
Duval, P. and Castelnau, O. (1995). Dynamic recrystallization of ice in polar ice sheets. J. Phys. IV, 5 (Colloque N°3), C3-197–C3-205.Google Scholar
Duval, P. and Gac, H. (1980). Does the permanent creep-rate of polycrystalline ice increase with crystal size?J. Glaciol., 25, 151–157.CrossRefGoogle Scholar
Duval, P. and Lorius, C. (1980). Crystal size and climatic record down to the last ice age from Antarctic ice. Earth Planet. Sci. Lett., 48, 59–64.CrossRefGoogle Scholar
Duval, P. and Montagnat, M. (2002). Comments on “Superplastic deformation of ice: experimental observations” by Goldsby, D. L. and Kohlstedt, D. L.. J. Geophys. Res., 107B, ECV4, 1–2.Google Scholar
Duval, P., Ashby, M. F. and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.CrossRefGoogle Scholar
Dysthe, D. K., Podladchikov, Y., Renard, F., Feder, J. and Jamtveit, G. (2002). Universal scaling in transient creep. Phys. Rev. Lett., 89, 246102-1–246102-4.CrossRefGoogle ScholarPubMed
Echelmeyer, K. and Zhongxiang, W. (1987). Direct observation of basal sliding and deformation of basal drift at sub-freezing temperatures. J. Glaciol., 33, 83–98.CrossRefGoogle Scholar
,EPICA Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628.CrossRefGoogle Scholar
Fischer, D. A. and Koerner, R. M. (1986). On the special rheological properties of ancient microparticles-laden Northern Hemisphere ice as derived from bore-hole and core measurements. J. Glaciol., 32, 501–510.CrossRefGoogle Scholar
Fitzsimons, S. J., Lorrain, R. and McManus, K. J. (1999). Structure and strength of basal ice and substrate of a dry-based glacier: evidence for substrate deformation at sub-freezing temperatures. Ann. Glaciol., 28, 236–240.CrossRefGoogle Scholar
Friedel, J. (1964). Dislocations. Oxford: Pergamon Press.Google Scholar
Frost, H. J. and Ashby, M. F. (1982). Deformation-Mechanism Maps for Metals and Alloys. Oxford: Pergamon Press.Google Scholar
Gagliardini, O. and Meyssonnier, J. (1999). Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal. J. Geophys. Res., 104 (B8), 17,797–17,809.CrossRefGoogle Scholar
Gagliardini, O. and Meyssonnier, J. (2000). Simulation of anisotropic ice flow and fabric evolution along the GRIP-GISP2 flowline, Central Greenland. Ann. Glaciol., 30, 503–509.CrossRefGoogle Scholar
Gao, X. Q. and Jacka, T. H., (1987). The approach to similar tertiary creep rates for Antarctic core ice and laboratory prepared ice. J. Physique Coll., 48, C1-289–C1-296.Google Scholar
Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Zwinger, T. and Ruokolainen, J. (2006). Flow-induced anisotropy in polar ice and related ice-sheet flow modeling. J. Non-Newtonian Fluid Mech., 134, 33–43.CrossRefGoogle Scholar
Gilormini, P., Nebozhyn, M. V. and Castaneda, P. Ponte (2001). Accurate estimates for the creep behavior of hexagonal polycrystals. Acta Mater., 49, 329–337.CrossRefGoogle Scholar
Ginter, T. J., Chaudhury, P. K. and Mohamed, F. A. (2001). An investigation of Harper-Dorn creep at large strains. Acta Mater., 49, 263–272.CrossRefGoogle Scholar
Glen, J. W. (1955). The creep of polycrystalline ice. Proc. R. Soc. London A, 228, 519–538.CrossRefGoogle Scholar
Glen, J. W. and Perutz, M. F. (1954). The growth and deformation of ice crystals. J. Glaciol., 2, 397–403.CrossRefGoogle Scholar
Gold, L. W. (1972). The Failure Process in Columnar-Grained Ice. Tech. Paper No. 369 of the Division of Building Research. Ottawa: National Research Council of Canada.Google Scholar
Goldsby, D. L. and Kohlstedt, D. L. (1997). Grain boundary sliding in fine-grained ice I. Scr. Mater., 37, 1399–1406.CrossRefGoogle Scholar
Goldsby, D. L. and Kohlstedt, D. L. (2001). Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106 (B6), 11,017–11,030.CrossRefGoogle Scholar
Goodman, D. J., Frost, H. J. and Ashby, M. F. (1981). The plasticity of polycrystalline ice. Phil. Mag., 43, 665–695.CrossRefGoogle Scholar
Gow, A. J. (1968). Bubbles and bubble pressure in Antarctic glacier ice. J. Glaciol., 7, 167–182.CrossRefGoogle Scholar
Gow, A. J. (1969). On the rates of growth of grains and crystals in south polar firn. J. Glaciol., 8, 241–252.CrossRefGoogle Scholar
Gow, A. J. (1974). Time-temperature dependence of sintering in perennial isothermal snowpacks. In Snow Mechanics Symposium. IAHS Publication 114, pp. 25–41.Google Scholar
Gow, A. J. and Williamson, T. (1976). Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep ice core drilling at Byrd Station. CRREL Report, 76-35.Google Scholar
Gow, A. J., Meese, D. A., Alley, R. B.et al. (1997). Physical and structural properties of the Greeland Ice Sheet Project: A review. J. Geophys. Res., 102 (C12), 26,559–26,575.CrossRefGoogle Scholar
Gundestrup, N. S. and Hansen, B. L. (1984). Bore-hole survey at Dye 3, South Greenland, J. Glaciol., 30, 282–288.CrossRefGoogle Scholar
Hamann, I., Kipfstuhl, S., Faria, S.et al. (2009) Subgrain boundaries and related microstructural features in EPICA–Dronning Maud Land (EDML) deep ice core, J. Glaciol. (in press).Google Scholar
Hill, R. (1950). The Mathematic Theory of Plasticity. New York: Oxford University Press.Google Scholar
Hillert, M. (1965). On the theory of normal and abnormal grain growth. Acta Metall., 13, 227–238.CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.Google Scholar
Homer, D. R. and Glen, J. W. (1978). The creep activation energies of ice. J. Glaciol., 21, 429–444.CrossRefGoogle Scholar
Hondoh, T. (2000). Nature and behavior of dislocations in ice. In Physics of Ice Core Records, ed. Hondoh, T.. Sapporo: Hokkaido University Press, pp. 3–24.Google Scholar
Hooke, R. LeB.Dahlin, B. B. and Kauper, M. T. (1972). Creep of ice containing dispersed fine sand. J. Glaciol., 11, 327–336.CrossRefGoogle Scholar
Hooke, R. LeB. (1981). Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data and field measurements. Rev. Geophys. Space Phys., 19, 664–672.CrossRefGoogle Scholar
Hooke, R. LeB. (1998). Principles of Glacier Mechanics. Upper Saddle River, N. J.: Prentice Hall.Google Scholar
Humphreys, F. J. and Hatherly, M. (1996). Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press.Google Scholar
Hutchinson, J. W. (1976). Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A, 348, 101–127.CrossRefGoogle Scholar
Hutchinson, J. W. (1977). Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metall. Trans., 8A, 9, 1465–1469.CrossRefGoogle Scholar
Hutter, K. (1983). Theoretical Glaciology. Dordrecht: Reidel.CrossRefGoogle Scholar
Iliescu, D., Baker, I. and Chang, Hui (2004). Determining the orientations of ice crystals using Electron Backscatter Patterns. Microsc. Res. Tech., 63, 183–187.CrossRefGoogle ScholarPubMed
Jacka, T. H. (1984a). The time and strain required for development of minimum strain rates in ice. Cold Reg. Sci. Technol., 8, 261–268.CrossRefGoogle Scholar
Jacka, T. H. (1984b). Laboratory studies on relationship between ice crystal size and flow rate. Cold Reg. Sci. Technol., 10, 31–42.CrossRefGoogle Scholar
Jacka, T. H. (1994). Investigations of discrepancies between laboratory studies on the flow of ice: density, sample shape and size, and grain size. Ann. Glaciol., 19, 146–154.CrossRefGoogle Scholar
Jacka, T. H. and Jun, Li (1994). The steady state crystal size of deforming ice. Ann. Glaciol., 20, 13–18.CrossRefGoogle Scholar
Jacka, T. H. and Maccagnan, M. (1984). Ice crystallographic and strain rate changes with strain in compression and extension. Cold Reg. Sci. Technol., 8, 269–286.CrossRefGoogle Scholar
Johnston, M. E., Croasdale, K. R. and Jordaan, I. J. (1998). Localized pressures during ice-structure interaction: relevance to design criteria. Cold Reg. Sci. Technol., 27, 105–117.CrossRefGoogle Scholar
Jones, S. J. and Brunet, J. G. (1978). Deformation of ice single crystals close to the melting point. J. Glaciol., 21, 445–455.CrossRefGoogle Scholar
Jones, S. J. and Chew, H. A. M. (1981). On the grain-size dependence of secondary creep. J. Glaciol., 27, 517–518.CrossRefGoogle Scholar
Jones, S. J. and Chew, H. A. M. (1983a). Effect of sample and grain size on the compressive strength of ice. Ann. Glaciol., 4, 129–132.CrossRefGoogle Scholar
Jones, S. J. and Chew, H. A. M. (1983b). Creep of ice as a function of hydrostatic pressure. J. Phys. Chem. 87, 4064–4066.CrossRefGoogle Scholar
Jones, S. J., Gagnon, R. E., Derradji, A. and Bugden, A. (2003). Compressive strength of iceberg ice. Can. J. Phys., 81, 191–200.CrossRefGoogle Scholar
Jordaan, I. J. (2001). Mechanics of ice-structure interaction. Eng. Fract. Mech., 68, 1923–1960.CrossRefGoogle Scholar
Kalifa, P. (1988). Contribution à l'étude de la fissuration dans la glace polycristalline en compression. Thèse de l'Université Joseph Fourier, Grenoble, France.
Kamb, W. B. (1972). Experimental recrystallization of ice under stress. American Geophysical Union, Geophysical Monograph, 16, 211–241.Google Scholar
Kirby, S. H., Durham, W. B., Beeman, M. L., Heard, H. C. and Daley, M. A. (1987). Inelastic properties of ice Ih at low temperatures and high pressures. J. Physique Coll., 48, C1-227–C1-232.Google Scholar
Kohlstedt, D. L. and Zimmerman, M. E. (1996). Rheology of partially molten mantle rocks, Ann. Rev. Earth Planet. Sci., 24, 41–62.CrossRefGoogle Scholar
Langdon, T. G. (1973). Creep mechanisms in Ice. In Physics and Chemistry of Ice, eds. Whalley, E., Jones, S. J. and Gold, L. W.. Ottawa: Royal Society of Canada, pp. 356–361.Google Scholar
Langdon, T. G. (1993). The role of grain boundaries in high temperature deformation. Mater. Sci. Eng., A166, 67–79.CrossRefGoogle Scholar
Langdon, T. G. (1994). A unified approach to grain boundary sliding in creep and superplasticity. Acta Metal. Mater., 42, 2437–2443.CrossRefGoogle Scholar
Langdon, M. and Yavari, P. (1982). An investigation of Harper-Dorn creep. II. The flow process. Acta Metall., 30, 881–887.CrossRefGoogle Scholar
Lawson, W. (1996). The relative strength of debris-laden basal ice and clean glacier ice: some evidence from Taylor Glacier, Antarctica. Ann. Glaciol., 23, 270–276.CrossRefGoogle Scholar
Lebensohn, R. A., Tomé, C. N. and Castaneda, P. Ponte (2007). Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating intragranular field fluctuations. Phil. Mag., 7, 4287–4322.CrossRefGoogle Scholar
Legrand, M. and Mayewski, P. (1997). Glaciochemistry of polar ice cores: a review. Rev. Geophys., 35, 219–243.CrossRefGoogle Scholar
Jun, Li, Jacka, T. H. and Budd, W. F. (1996). Deformation rates in combined compression and shear for ice which is initially isotropic and after the development of strong anisotropy. Ann. Glaciol., 23, 247–252.CrossRefGoogle Scholar
Jun, Li, Jacka, T. H. and Morgan, V. (1998). Crystal size and microparticle record in the ice core from Dome Summit South, Law Dome, East Antarctica. Ann. Glaciol., 27, 243–348.CrossRefGoogle Scholar
Lipenkov, V., Barkov, N. I., Duval, P. and Pimienta, P. (1989). Crystalline structure of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35, 392–398.CrossRefGoogle Scholar
Lipenkov, V., Salamatin, A. and Duval, P. (1997). Bubbly-ice densification in ice sheets: applications. J. Glaciol., 43, 397–407.CrossRefGoogle Scholar
Liu, F., Baker, I. and Dudley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Phil. Mag., A71, 15–42.CrossRefGoogle Scholar
Lliboutry, L. (1969). The dynamics of temperate glaciers from the detailed viewpoint. J. Glaciol., 8, 185–205.CrossRefGoogle Scholar
Lliboutry, L. (1971). Permeability, brine content and temperature of a temperate glacier. J. Glaciol., 10, 15–29.CrossRefGoogle Scholar
Lliboutry, L. and Duval, P. (1985). Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Ann. Geophys., 3, 207–224.Google Scholar
Louchet, F., Weiss, J. and Richeton, Th. (2006). Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett., 97, 075504-1–075504-4.CrossRefGoogle ScholarPubMed
Mangeney, A., Califano, F. and Hutter, K. (1997). A numerical study of anisotropic, low Reynolds number, free surface flow of ice-sheet modeling. J. Geophys. Res., 102, B10, 22,749–22,764.CrossRefGoogle Scholar
Mangold, N., Allemand, P., Duval, P., Geraud, Y. and Thomas, P. (2002). Experimental and theoretical deformation of ice-rock mixtures: implications on rheology and ice content of Martian permafrost. Planet. Space Sci., 50, 385–401.CrossRefGoogle Scholar
Marshall, H. P., Harper, J. T., Pfeffer, W. T. and Humphrey, N. F. (2002). Depth-varying constitutive properties observed in an isothermal glacier. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015412.CrossRefGoogle Scholar
Mellor, M. (1980). Mechanical properties of polycrystalline ice. In Physics and Mechanics of Ice, ed. Tryde, P.. Berlin: Springer-Verlag.Google Scholar
Mellor, M. and Cole, D. M. (1982). Deformation and failure of ice under constant stress or constant strain-rate. Cold Reg. Sci. Technol., 5, 201–219.CrossRefGoogle Scholar
Mellor, M. and Testa, R. (1969). Creep of ice under low stress. J. Glaciol., 8, 147–152.CrossRefGoogle Scholar
Melton, J. S. and Schulson, E. M. (1998). Ductile compressive failure of columnar saline ice under triaxial loading. J. Geophys. Res., 103 (C10), 21,759–21,766.CrossRefGoogle Scholar
Meyssonnier, J. and Goubert, A. (1994). Transient creep of polycrystalline ice under uniaxial compression: an assessment of internal state variables models. Ann. Glaciol., 19, 55–62.CrossRefGoogle Scholar
Michel, B. (1978). Ice Mechanics. Québec: Laval University Press.Google Scholar
Mohamed, F. A. (2005). On the origin of superplastic flow at very low stresses. Mat. Sci. Eng., A410–411, 89–94.CrossRefGoogle Scholar
Montagnat, M. and Duval, P. (2000). Rate controlling processes in the creep of polar ice: influence of grain boundary migration associated with recrystallization. Earth Planet. Sci. Lett., 183, 179–186.CrossRefGoogle Scholar
Montagnat, M. and Duval, P. (2004). The viscoplastic behavior of ice in polar ice sheets: experimental results and modelling. C. R. Physique, 5, 699–708.CrossRefGoogle Scholar
Montagnat, M., Duval, P., Bastie, P., Hamelin, B. and Lipenkov, V. Ya. (2003). Lattice distortion in ice crystals from the Vostok core (Antarctica) revealed by hard X-ray diffraction: implication in the deformation of ice at low stresses. Earth Planet. Sci. Lett., 214, 369–378.CrossRefGoogle Scholar
Morgan, V. I. (1991). High-temperature ice creep tests. Cold Reg. Sci. Technol., 19, 295–300.CrossRefGoogle Scholar
Muguruma, J., Mae, S. and Higashi, A. (1966). Void formation by non-basal glide in ice single crystals. Phil. Mag., 13, 625–629.CrossRefGoogle Scholar
Mukherjee, A. K. (2002). An examination of the constitutive equation for elevated temperature plasticity. Mater. Sci. Eng., A322, 1–22.CrossRefGoogle Scholar
Nabarro, F. R. N. (2002). Creep at very low stresses. Metall. Mater. Trans., 33A, 213–218.CrossRefGoogle Scholar
Obbard, R., Baker, I. and Sieg, K. (2006). Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol., 52, 546–557.CrossRefGoogle Scholar
Paterson, W. S. B. (1991). Why is ice-age ice sometimes “soft”?Cold Reg. Sci. Technol., 20, 75–98.CrossRefGoogle Scholar
Paterson, W. S. B. (1994). The Physics of Glaciers, 3rd edn. Oxford: Elsevier Science Ltd.Google Scholar
Peltier, W. R., Goldsby, D. L., Kohlstedt, D. L. and Tarasov, Lev (2000). Ice-age ice sheet rheology: constraints from the Last Glacial Maximum from the Laurentide ice sheet. Ann. Glaciol., 30, 163–176.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. Oxford: Oxford University Press.Google Scholar
Pettit, A. C. (2006). Ice flow at low deviatoric stresses: Siple Dome, West Antarctica. In Glacier Science and Environmental Change, ed. Knight, P. G.. Oxford: Blackwell Publishing, pp. 300–303.CrossRefGoogle Scholar
Pettit, E. C. and Waddington, E. D. (2003). Ice flow at low deviatoric stress. J. Glaciol., 49, 359–369.CrossRefGoogle Scholar
Pettit, E. C., Thorsteinsson, Th., Jacobson, H. P. and Waddington, E. D. (2007). The role of crystal fabric in flow near an ice divide. J. Glaciol., 53, 277–288.CrossRefGoogle Scholar
Pimienta, P. and Duval, P. (1987). Rate controlling processes in the creep of polar glacier ice. J. Physique Coll., 48, C1-243–C1-248.Google Scholar
Plé, O. and Meyssonnier, J. (1997). Preparation and preliminary study of structure-controlled S2 columnar ice. J. Phys. Chem., 101, 6118–6122.CrossRefGoogle Scholar
Poirier, J. P. (1985). Creep of Crystals: High Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Raj, R. and Ashby, M. F. (1971). On grain boundary sliding and diffusional creep. Metall. Trans., 2, 1113–1128.CrossRefGoogle Scholar
Ramseier, R. O. (1972). Growth and mechanical properties of river and lake ice. Ph.D. Thesis, Laval University, Canada.
Read, W. T. (1953). Dislocations in Crystals. New York: McGraw-Hill Book Company.Google Scholar
Richeton, Th., Weiss, J. and Louchet, F. (2005). Dislocation avalanches: role of temperature, grain size and strain hardening. Acta Mater., 53, 4463–4471.CrossRefGoogle Scholar
Rigsby, G. P. (1951). Crystal fabric studies on Emmons Glacier, Mount Rainier, Washington. J. Geol., 59, 590–598.CrossRefGoogle Scholar
Ruano, O. A., Wolfenstime, J., Wadsworth, J. and Sherby, O. D. (1991). Harper-Dorn and power law creep in uranium dioxide. Acta Metall. Mater., 39, 661–668.CrossRefGoogle Scholar
Russell-Head, D. S. and Budd, W. F. (1979). Ice-flow properties derived from bore-hole shear measurements combined with ice-core studies. J. Glaciol., 24, 117–130.CrossRefGoogle Scholar
Samyn, D., Svensson, A., Fitzsimons, S. J. and Lorrain, R. D. (2005). Ice crystal properties of amber ice and strain enhancement at the base of cold Antarctic glaciers. Ann. Glaciol., 40, 185–190.CrossRefGoogle Scholar
Sanderson, T. J. O. (1988). Ice Mechanics: Risks to Offshore Structures. London: Graham and Trotman Limited.Google Scholar
Schmid, E. and Boas, W. (1936). Kristallplastizität. Berlin: Springer.Google Scholar
Schulson, E. M. (2001). Brittle failure of ice. Eng. Fract. Mech., 68, 1839–1887.CrossRefGoogle Scholar
Schulson, E. M. and Buck, S. E. (1995). The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression. Acta Metall. Mater., 43, 3661–3668.CrossRefGoogle Scholar
Schulson, E. M. and Nickolayev, O. Y. (1995). Failure of columnar saline ice under biaxial compression: failure envelopes and the brittle-to-ductile transition. J. Geophys. Res., 100 (B11), 22,383–22,400.CrossRefGoogle Scholar
Sinha, N. K. (1978). Rheology of columnar-grained ice. Exp. Mech., 18, 464–470.CrossRefGoogle Scholar
Smith, C. S. (1948). Grains, phases, and interfaces: an interpretation of microstructure. Trans. Metall. Soc. AIME, 175, 15–51.Google Scholar
Song, M., Cole, D. M. and Baker, I. (2005a). Creep of granular ice with and without dispersed particles. J. Glaciol., 51, 210–218.CrossRefGoogle Scholar
Song, M., Baker, I. and Cole, D. M. (2005b). The effect of particles on dynamic recrystallization and fabric development of granular ice during creep. J. Glaciol., 51, 377–382.CrossRefGoogle Scholar
Song, M., Cole, D. M. and Baker, I. (2006). Investigation of Newtonian creep in polycrystalline ice. Phil. Mag. Lett., 86, 763–771.CrossRefGoogle Scholar
Steffensen, J. P. (1997). The size distribution of microparticles from selected segments of the GRIP ice core representing different climatic periods. J. Geophys. Res., 102 (C12), 26,755–26,763.CrossRefGoogle Scholar
Steinemann, S. (1958). Experimentelle Untersuchungen Zur Plastizität von Eis. Beitr. Geol. Schweiz, Hydrologie, 10, 1–72.Google Scholar
Sunder, S. S. and Wu, M. S. (1990). On the constitutive modeling of transient creep of polycrystalline ice. Cold Reg. Sci. Technol., 18, 267–294.CrossRefGoogle Scholar
Tatibouet, J., Perez, J. and Vassoille, R. (1986). High-temperature internal friction and dislocations in ice Ih. J. Physique, 47, 51–60.CrossRefGoogle Scholar
Taupin, V., Varadhan, S., Chevy, J.et al. (2007). Effects of size on the dynamics of dislocations in ice single crystals. Phys. Rev. Lett., 99, 155507-1–155507-4.CrossRefGoogle ScholarPubMed
Thorsteinsson, Th. (2002). Fabric development with nearest-neighbor interaction and dynamic recrystallization. J. Geophys. Res., 107 (B1), 1–13.CrossRefGoogle Scholar
Thorsteinsson, Th., Kipfstuhl, J. and Miller, H. (1997). Textures and fabrics in the GRIP ice core. J. Geophys. Res., 102 (C12), 26,583–26,599.CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1990). Flow laws for glacier ice: comparison of numerical predictions and field measurements. J. Glaciol., 36, 324–339.CrossRefGoogle Scholar
Veen, C. J. and Whillans, I. M. (1994). Development of fabric in ice. Cold Reg. Sci. Technol., 22, 171–195.CrossRefGoogle Scholar
Wakahama, G. (1967). On the plastic deformation of single crystal of ice. In Physics of Snow and Ice, ed. Oura, H.. Sapporo: Hokkaido University Press, 291–311.Google Scholar
Weertman, J. (1973). Creep of ice. In Physics and Chemistry of ice, eds. Whalley, E., Jones, S. J. and Gold, L. W.. Ottawa: Royal Society of Canada.Google Scholar
Weertman, J. (1983). Creep deformation of ice. Ann. Rev. Earth Planet. Sci., 11, 215–240.CrossRefGoogle Scholar
Weiss, J., Vidot, J., Gay, M.et al. (2002). Dome Concordia ice microstructure impurities effect on grain growth, Ann. Glaciol., 33, 552–558.CrossRefGoogle Scholar
Wilson, C. J. L. (1986). Deformation induced recrystallization of ice: the application of in-situ experiments. American Geophysical Union, Geophysical Monograph, 36, 213–232.Google Scholar
Wilson, C. J. L. and Russell-Head, D. S. (1982). Steady state preferred orientation of ice deformed in plane strain at −1 ℃. J. Glaciol., 28, 145–159.CrossRefGoogle Scholar
Wilson, C. J. L. and Zhang, Y. (1996). Development of microstructure in the high-temperature deformation of ice. Ann. Glaciol., 23, 293–302.CrossRefGoogle Scholar
Wolff, E. W. and 27 co-authors (2006). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 440, 491–496.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×