Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T17:03:46.319Z Has data issue: false hasContentIssue false

A

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 1 - 57
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Levens, ED, DeCherney, AH. Ectopic pregnancy and spontaneous abortion. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Wolfe, MM, Jensen, RT. Zollinger–Ellison syndrome: current concepts in diagnosis and management. N Engl J Med 1987; 317: 1200.Google Scholar

Bibliography

Barbier, F, Mer, M, Szychowiak, P, et al. Management of HIV-infected patients in the intensive care unit. Intens Care Med 2020; 46: 329.Google Scholar
Brookmeyer, R. Reconstruction and future trends of the AIDS epidemic in the United States. Science 1991; 253: 37.CrossRefGoogle ScholarPubMed
Cheruvu, S, Holloway, CJ. Cardiovascular disease in human immunodeficiency virus. Intern Med J 2014; 44: 315.Google Scholar
Dickson, D. Tests fail to support claims for origin of AIDS in polio vaccine. Nature 2000; 407: 117.Google Scholar
Karpatkin, S, Nardi, M, Green, D. Platelet and coagulation defects associated with HIV-1 infection. Thromb Haemost 2002; 88: 389.Google Scholar
Korber, B, Muldoon, M, Theiler, J, et al. Timing the ancestor of the HIV-1 pandemic strains. Science 2000; 288: 1789.CrossRefGoogle ScholarPubMed
Levine, SJ, White, DA. Pneumocystis carinii. Clin Chest Med 1988; 9: 395.Google Scholar
Mann, JM. AIDS – the second decade: a global perspective. J Infect Dis 1992; 165: 245.CrossRefGoogle ScholarPubMed
Miller, R. HIV-associated respiratory diseases. Lancet 1996; 348: 307.Google Scholar
Panlilo, AL, Cardo, DM, Grohskopf, LA, et al. Updated U.S. public health service guidelines for the management of occupational exposures to HIV and recommendations for postexposure prophylaxis. MMWR 2005; 54: 1.Google Scholar
Pitman, MC, Lewin, SR. Towards a cure for human immunodeficiency virus. Intern Med J 2018; 48: 12.Google Scholar
Rosen, MJ. Pulmonary complications of HIV infection: a review. Respirology 2008; 13: 181.Google Scholar
Suffredini, DA, George, JM, Masur, H. Management of antiretrovirals in critically ill patients: great progress but potential pitfalls. Crit Care Med 2018; 46: 663.Google Scholar
Thompson, MA, Aberg, JA, Cahn, P, et al. Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. JAMA 2010; 304: 321.Google Scholar
Yarwood, T, Russell, DB. HIV: almost gone, but still forgotten. Intern Med J 2020; 50: 269.Google Scholar

Bibliography

Bach, LA. The insulin-like growth factor system: basic and clinical aspects. Aust NZ J Med 1999; 29: 355.Google Scholar
Burt, MG, Ho, KKY. Newer options in the management of acromegaly. Intern Med J 2006; 36: 437.Google Scholar
Bills, DC, Meyer, FB, Laws, ER, et al. A retrospective analysis of pituitary apoplexy. Neurosurgery 1993; 33: 602.Google Scholar
Colao, A, Ferone, D, Marzullo, P, et al. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 2004; 25: 102.Google Scholar
Cheung, NW, Taylor, L, Boyages, SC. An audit of long-term octreotide therapy for acromegaly. Aust NZ J Med 1997; 27: 12.Google Scholar
Lamberts, S, van der Lely, AJ, de Herder, WW, et al. Octreotide. N Engl J Med 1996; 334: 246.Google Scholar
Melmed, S. Medical progress: acromegaly. N Engl J Med 2006; 355: 2558.Google Scholar
Randeva, H, Schoebel, J, Byrne, J, et al. Classical pituitary apoplexy: clinical features, management and outcome. Clin Endo 1999; 51: 181.Google Scholar

Bibliography

Weese, WC, Smith, IM. A study of 57 cases of actinomycosis over a 36-year period. Arch Intern Med 1975; 135: 1562.Google Scholar

Bibliography

Chang, MS, Rutherford, AE. Liver disease in pregnancy. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Dennekamp, M, Abramson, MJ. The effects of bushfire smoke on respiratory health. Respirology 2011; 16: 198.Google Scholar
Kales, SN, Christiani, DC. Acute chemical emergencies. New Engl J Med 2004; 350: 800.CrossRefGoogle ScholarPubMed
Schwartz, DA. Acute inhalational injury. Occup Med 1987; 2: 297.Google Scholar

Bibliography

Adir, Y, Shupak, A, Gil, A, et al. Swimming-induced pulmonary edema: clinical presentation and serial lung function. Chest 2004; 126: 394.Google Scholar
Albertson, TE, Walby, WF, Derlet, RW. Stimulant-induced pulmonary toxicity. Chest 1995; 108: 1140.Google Scholar
Bhattacharya, M, Kallet, RH, Ware, LB, et al. Negative-pressure pulmonary edema. Chest 2016; 150: 927.Google Scholar
Busl, KM, Bleck, TP. Neurogenic pulmonary edema. Crit Care Med 2015; 43: 1710.Google Scholar
Colice, GL. Neurogenic pulmonary edema. Clin Chest Med 1985; 6: 473.Google Scholar
Esper, A, Martin, GS, Staton, GW. Pulmonary edema. In: Scientific American Medicine. Pulmonary & Critical Care Medicine – Pulmonary. Hamilton: Dekker Medicine. 2020.Google Scholar
Gehlbach, BK, Geppert, E. The pulmonary manifestations of left heart failure. Chest 2004; 125: 669.Google Scholar
Harms, BA, Kramer, GC, Bodai, BI, et al. Effect of hypoproteinemia on pulmonary and soft tissue edema formation. Crit Care Med 1981; 9: 503.CrossRefGoogle ScholarPubMed
Kollef, MH, Pluss, J. Noncardiogenic pulmonary edema following upper airway obstruction. Medicine 1991; 70: 91.Google Scholar
McConkey, PP. Postobstructive pulmonary oedema. Anaesth Intens Care 2000; 28: 72.Google Scholar
Richalet, JP. High altitude pulmonary oedema: still a place for controversy? Thorax 1995; 50: 923.Google Scholar
Scherrer, U, Vollenweider, L, Delabays, A, et al. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med 1996; 334: 624.Google Scholar
Schoene, RB. Pulmonary edema at high altitude: review, pathophysiology, and update. Clin Chest Med 1985; 6: 491.Google Scholar
Schwarz, MI, Albert, RK. ‘Imitators’ of the ARDS: implications for diagnosis and treatment. Chest 2004; 125: 1530.Google Scholar
Sibbald, WJ, Cunningham, DR, Chin, DN. Non-cardiac or cardiac pulmonary edema? Chest 1983; 84: 452.Google Scholar
Simon, RP. Neurogenic pulmonary edema. Neurol Clin 1993; 11: 309.Google Scholar
Sporer, KA, Dorn, E. Heroin-related noncardiogenic pulmonary edema. Chest 2001; 120: 1628.Google Scholar
Steinberg, KP, Hudson, LD. Acute lung injury and acute respiratory distress syndrome: the clinical syndrome. Clin Chest Med 2000; 21: 401.CrossRefGoogle ScholarPubMed
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar
Timby, J, Reed, C, Zeilender, S, et al. Mechanical causes of pulmonary edema. Chest 1990; 98: 973.Google Scholar

Bibliography

Beitler, JR, Schoenfeld, DA, Thompson, BT. Preventing ARDS: progress, promise, and pitfalls. Chest 2014; 146: 1102.Google Scholar
Esper, A, Martin, GS, Staton, GW. Pulmonary edema. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Guerin, C, Thompson, T, Brower, R. The ten diseases that look like ARDS. Intens Care Med 2015; 41: 1099.Google Scholar
Jaber, S, Slutsky, AS, eds. Mechanical ventilation in intensive care. Intens Care Med 2020; 46: Special Issue.Google Scholar
Rittayamai, N, Brochard, L. What’s new in ADRS (clinical studies). Intens Care Med 2014; 40: 1731.Google Scholar
Thompson, BT, Chambers, RC, Liu, KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377: 562.Google Scholar
Various. ARDS birthday issue. Intens Care Med 2016; 42: 637.Google Scholar

Bibliography

Dwyer, DE, Cunningham, AL. Herpes simplex and varicella-zoster virus infections. Med J Aust 2002; 177: 267.Google Scholar
Ernest, ME, Franey, RJ. Acyclovir and ganciclovir-induced neurotoxicity. Ann Pharmacother 1998; 32: 111.Google Scholar
Hirsch, MS. Herpesvirus infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Jackson, JL, Gibbons, R, Meyer, G, et al. The effect of treating herpes zoster with oral acyclovir in preventing postherpetic neuralgia: a meta-analysis. Arch Intern Med 1997; 157: 909.CrossRefGoogle ScholarPubMed
Jacobson, M. Treatment of cytomegalovirus retinitis in patients with the acquired immunodeficiency syndrome. N Engl J Med 1997; 337: 105.Google Scholar
Laskin, OL. Acyclovir: pharmacology and clinical experience. Arch Intern Med 1984; 144: 1241.Google Scholar
Prentice, HG, Gluckman, E, Powles, RL, et al. Impact of long-term acyclovir on cytomegalovirus infection and survival after allogenic bone marrow transplantation: European Acyclovir for CMV Prophylaxis Study Group. Lancet 1994; 343: 749.Google Scholar

Bibliography

Belardinelli, L, Linden, J, Berne, RM. The cardiac effects of adenosine. Prog Cardiovasc Dis 1989; 167: 1186.Google Scholar
Cronstein, BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76: 5.CrossRefGoogle ScholarPubMed
McCallion, K, Harkin, DW, Gardiner, KR. Role of adenosine in immunomodulation: review of the literature. Crit Care Med 2004; 32: 273.Google Scholar

Bibliography

Al-Kurd, A, Mazeh, H. The endocrine system: adrenal glands. In: Scientific American Medicine. Organ Systems: Anatomy & Physiology. Hamilton: Dekker Medicine. 2020.Google Scholar
Amrein, K, Martucci, G, Hahner, S. Understanding adrenal crisis. Intens Care Med 2018; 44: 652.Google Scholar
Annane, D, Pastores, SM, Rochwerg, B, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part 1): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2017; 45: 2078 and Intens Care Med 2017; 43: 1751.Google Scholar
Annane, D, Pastores, SM, Arlt, W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Crit Care Med 2017; 45: 2089 and Intens Care Med 2017; 43: 1781.Google Scholar
Annane, D, Sebille, V, Charpentier, C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288: 862.Google Scholar
Claussen, MS, Landercasper, J, Cogbill, TH. Acute adrenal insufficiency presenting as shock after trauma and surgery: three cases and review of the literature. J Trauma 1992; 32: 94.Google Scholar
Cohen, J, Venkatesh, B. Relative adrenal insufficiency in the intensive care population; background and critical appraisal of the evidence. Anaesth Intens Care 2010; 38: 425.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Hamrahian, AH, Oseni, TS, Arafah, BM. Measurement of serum free cortisol in critically ill patients. N Engl J Med 2004; 350: 1629.CrossRefGoogle ScholarPubMed
Jung, C, Inder, WJ. Management of adrenal insufficiency during the stress of medical illness and surgery. Med J Aust 2008; 188: 409.Google Scholar
Keller-Wood, M. Hypothalamic-piuitary-adrenal axis-feedback control. Compr Physiol 2015; 5: 1161.Google Scholar
Ligtenberg, JJM, Zilstra, JG. The relative adrenal insufficiency syndrome revisited: which patients will benefit from low-dose steroids? Curr Opin Crit Care 2004; 10: 456.Google Scholar
Lipiner-Friedman, D, Sprung, CL, Laterre, PF, et al. Adrenal function in sepsis: the retrospective Corticus cohort study. Crit Care Med 2007; 35: 1012.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Loriaux, DL. Adrenal insufficiency. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Malerba, G, Romano-Girard, F, Cravoisy, A, et al. Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intens Care Med 2005; 31: 388.Google Scholar
Marik, PE. Unravelling the mystery of adrenal failure in the critically ill. Crit Care Med 2004; 32: 569.Google Scholar
Marik, PE, Pastores, SM, Annane, D, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med 2008; 36: 1937.Google Scholar
Marik, PE, Zaloga, GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest 2002; 122: 1784.Google Scholar
Marik, PE, Zaloga, GP. Adrenal insufficiency during septic shock. Crit Care Med 2003; 31: 141.Google Scholar
Pastores, SM, Annane, D, Rochwerg, B, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part 2): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2018; 46: 146 and Intens Care Med 2017; 43: 1751.Google Scholar
Peeters, B, Meersseman, P, Perre, SV, et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intens Care Med 2018; 44: 1720.Google Scholar
Puar, TH, Stikkelbroeck, NM, Smans, LC, et al. Adrenal crisis: still a deadly event in the 21st century. Am J Med 2016; 129: 339.Google Scholar
Rai, R, Cohen, J, Venkateash, B. Assessment of adrenocortical function in the critically ill. Crit Care Resusc 2004; 6: 123.Google Scholar
Rygard, SL, Butler, E, Granholm, A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential review. Intens Care Med 2018; 44: 1003.CrossRefGoogle Scholar
Salem, M, Tainsh, RE, Bromberg, J, et al. Perioperative glucocorticoid coverage: a reassessment 42 years after emergence of a problem. Ann Surg 1994; 219: 416.Google Scholar
Szalados, JE, Vukmir, RB. Acute adrenal insufficiency resulting from adrenal hemorrhage as indicated by post-operative hypotension. Intens Care Med 1994; 20: 216.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Vella, A, Nippoldt, TB, Morris, JC. Adrenal hemorrhage: a 25-year experience at the Mayo Clinic. Mayo Clin Proc 2001; 76: 161.Google Scholar
Venkatesh, B, Finfer, S, Cohen, J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018; 378: 797.Google Scholar
Venkatesh, B, Prins, J, Torpy, D, et al. Relative adrenal insufficiency: match point or deuce? Crit Care Resusc 2006; 8: 376.Google Scholar
Vita, JA, Silverberg, SJ, Goland, RS, et al. Clinical clues to the cause of Addison’s disease. Am J Med 1985; 78: 461.Google Scholar
Volbeda, M, Wetterslev, J, Gluud, C, et al. Glucocorticoids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intens Care Med 2015; 41: 1220.Google Scholar
Webb, SAR. Relative adrenal insufficiency exists and should be treated. Crit Care Resusc 2006; 8: 371.Google Scholar
Zaloga, GP, Marik, P. Hypothalamic-pituitary-adrenal insufficiency. Crit Care Clin 2001; 17: 25.Google Scholar

Bibliography

Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Imura, H. Control of biosynthesis and secretion of ACTH: a review. Horm Metab Res 1987; 16 (suppl.): 1.Google Scholar
Orth, DN. Corticotropin-releasing hormone in humans. Endocr Rev 1992; 13: 164.Google Scholar

Bibliography

Buckley, RH, Schiff, RI. The use of intravenous immune globulin in immunodeficiency diseases. N Engl J Med 1991; 325: 110.Google Scholar
Van der Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infection in the Compromised Host. 4th edition. New York: Plenum. 2002; p 5.Google Scholar

Bibliography

Vincent, PC Drug-induced aplastic anemia and agranulocytosis. Drugs 1986; 31: 52.Google Scholar

Bibliography

Melby, JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am 1991; 20: 247.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
White, PC. Disorders of aldosterone biosynthesis and action. N Engl J Med 1994; 331: 250.Google Scholar

Bibliography

Del Rosso, JQ. Disorders of hair. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Kaufman, KD. Long-term (5-year) multinational experience with finasteride 1 mg in the treatment of men with androgenetic alopecia. Eur J Dermatol 2002; 12: 38.Google Scholar
Paus, R, Cotsarelis, G. The biology of hair follicles. N Engl J Med 1999; 341: 491.Google Scholar
Rusting, RL. Hair: why it grows, why it stops. In: The Frontiers of Biotechnology. New York: Scientific American. 2002; p 66.Google Scholar
Shapiro, J, Price, VH. Hair regrowth: therapeutic options. Dermatol Clin 1998; 16: 341.Google Scholar
Tosti, A, Piraccini, BM. Androgenetic alopecia. Int J Dermatol 1999; 38 (suppl. 1): 1.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Locker, GY, Hamilton, S, Harrus, J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24: 5313.Google Scholar
McIntire, KR, Waldmann, TA, Moertel, CG, et al. Serum alpha-fetoprotein in patients with neoplasms of the gastrointestinal tract. Cancer Res 1975; 35: 991.Google Scholar

Bibliography

Alkins, SA, O’Malley, P. Should health-care systems pay for replacement therapy in patients with α1-antitrypsin deficiency? Chest 2000; 117: 875.Google Scholar
Burdon, JGW, Knight, KR, Brenton, S, et al. Antiproteinase deficiency, emphysema and replacement therapy. Aust NZ J Med 1996; 26: 769.Google Scholar
Carrell, RW, Whisstock, J, Lomas, DA. Conformational changes in serpins and the mechanism of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 1994; 150: S171.Google Scholar
Eden, E, Mitchell, D, Mehlman, B, et al. Atopy, asthma, and emphysema in patients with severe α-1-antitrypsin deficiency. Am J Repir Crit Care Med 1997; 156: 68.Google Scholar
Gadek, JE, ed. Alpha1-antitrypsin: A world view. Chest 1997; 110 (suppl.).Google Scholar
Hogarth, DK, Rachelefsky, G. Screening and familial testing of patients for α1-antitrypsin deficiency. Chest 2008; 133: 981.Google Scholar
Hutchison, DCS, Hughes, MD. Alpha-1-antitrypsin replacement therapy: will its efficacy ever be proved? Eur Respir J 1997; 10: 2191.Google Scholar
Larsson, C. Natural history and life expectancy in severe α1-antitrypsin PiZ. Acta Med Scand 1978; 204: 345.Google Scholar
Laurell, C-B, Erikson, S. The electrophoretic α1-globin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15: 132.Google Scholar
Stoller, JK. Clinical features and natural history of severe α1-antitrypsin deficiency. Chest 1997; 111: 123S.Google Scholar

Bibliography

Alfrey, AC. Aluminum intoxication. N Engl J Med 1984; 310: 1113.Google Scholar
Ciba Foundation. Aluminium in Biology and Medicine. London. 1992.Google Scholar
Cooke, K, Gould, MH. The health effects of aluminium – a review. J R Soc Health 1991; 111: 163.Google Scholar
Kaiser, L, Schwartz, KA. Aluminum-induced anemia. Am J Kidney Dis 1985; 6: 348.Google Scholar
McCarthy, DM. Drug therapy (sucralfate). N Engl J Med 1991; 325: 1017.Google Scholar
Mulla, H, Peek, G, Upton, D, et al. Plasma aluminum levels during sucralfate prophylaxis for stress ulceration in critically ill patients on continuous venovenous hemofiltration: a randomized controlled trial. Crit Care Med 2001; 29: 267.Google Scholar
Wills, MR, Savory, J. Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 1983; 2: 29.Google Scholar

Bibliography

Hall, JE. Normal and abnormal menstruation. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Nattiv, A, Agostini, R, Drinkwater, B, et al. The female athlete triad: the inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clin Sports Med 1994; 13: 405.Google Scholar
Ng, E, Sztal-Mazer, S, Davis, SR. Functional hypothalamic amenorrhoea: a diagnosis of exclusion. Med J Aust 2022; 216: 73.Google Scholar
Tan, SL, Jacobs, HS. Recent advances in the management of patients with amenorrhoea. Clin Obstet Gynaecol 1985; 12: 725.Google Scholar

Bibliography

Choi, DMA, Duffy, BL. Amniotic fluid embolism. Anaesth Intens Care 1995; 23: 741.Google Scholar
Clark, SL. Amniotic fluid embolism. Obstet Gynecol 2014; 123: 337.Google Scholar
Clark, SL, Hankins, GDV, Dudley, DA, et al. Amniotic fluid embolism: analysis of the national registry. Am J Obstet Gynecol 1995; 172; 1158.Google Scholar
Clark, SL, Romero, R, Dildy, GA, et al. Proposed diagnostic criteria for the case definition of amniotic fluid embolism in research studies. Am J Obstet Gynecol 2016; 215: 408.Google Scholar
Gist, RS, Stafford, IP, Leibowitz, AB, et al. Amniotic fluid embolism. Anesth Analg 2009; 108: 1599.Google Scholar
Locksmith, GJ. Amniotic fluid embolism. Obstet Gynecol Clin North Am 1999; 26: 435.Google Scholar
McDougall, RJ, Duke, GJ. Amniotic fluid embolism syndrome: case report and review. Anaesth Intens Care 1995; 23: 735.Google Scholar
Monga, M. Amniotic fluid embolism: a diagnostic dilemma. Crit Care Med 2012; 40: 2236.Google Scholar
Moore, J, Baldisseri, MR. Amniotic fluid embolism. Crit Care Med 2005; 33 (suppl.): S279.Google Scholar
Morgan, M. Amniotic fluid embolism. Anaesthesia 1979; 34: 20.Google Scholar
Oi, H, Kobayashi, H, Hirashima, Y, et al. Serological and immunohistochemical diagnosis of amniotic fluid embolism. Semin Thromb Hemost 1998; 24: 479.Google Scholar
Tuffnell, DJ. Amniotic fluid embolism. Curr Opinion Obstet Gynecol 2003; 15: 119.Google Scholar

Bibliography

Adams, EB, Macleod, IN. Invasive amebiasis. Medicine 1977; 56: 315 & 325.Google Scholar
Van Hal, SJ, Stark, DJ, Fotedar, R, et al. Amoebiaisis: current status in Australia. Med J Aust 2007; 186: 412.Google Scholar

Bibliography

Byard, RW, Rodgers, NG, James, RA, et al. Death and paramethoxyamphetamine – an evolving problem. Med J Aust 2002; 176: 496.Google Scholar
Chin, KM, Channick, RN, Rubin, LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 2006; 130: 1657.Google Scholar
Connolly, HM, Crary, JL, McGoon, MD, et al. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 1997; 337: 581.Google Scholar
Fishman, AP. Aminorex to fen/phen: an epidemic foretold. Circulation 1999; 99: 156.Google Scholar
Henry, JA, Jeffreys, KJ, Dawling, S. Toxicity and deaths from 3, 4-methylenedioxy methamphetamine (‘ecstasy’). Lancet 1992; 340: 384.Google Scholar
Milroy, CM. Ten years of ‘ecstasy’. J R Soc Med 1999; 92: 68.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Parrott, AC, ed. MDMA (Methylenedioxy-methamphetamine). Basel: Karger. 2000.Google Scholar
Screaton, GR, Cairns, HS, Sarner, M, et al. Hyperpyrexia and rhabdomyolysis after MDMA (‘ecstasy’) abuse. Lancet 1992; 339: 677.Google Scholar

Bibliography

Anderson, KC, Weinstein, HJ. Transfusion-associated graft-versus-host disease. N Engl J Med 1990; 323: 315.Google Scholar
Barrett-Connor, E. Anemia and infection. Am J Med 1972; 52: 242.Google Scholar
Berliner, N, Gasner, JM. Anemia: production defects. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Boutboul, D, Touzot, F, Szalat, R. Understanding therapeutic emergencies in acute hemolysis. Intens Care Med 2018; 44: 482.Google Scholar
Clucas, DB, Fox, LC, Wood, EM, et al. Revisiting acquired aplastic anaemia: current concepts in diagnosis and management. Intern Med J 2019; 49: 152.Google Scholar
Corwin, HL, Gettinger, A, Pearl, RG, et al. The CRIT study: anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med 2004; 32: 39.Google Scholar
Editorial. Paroxysmal nocturnal haemoglobinuria. Lancet 1992; 339: 395.Google Scholar
Eichner, ER. Fatigue of anemia. Nutr Rev 2001; 59: S17.Google Scholar
Engelfriet, CP, Overbeeke, MAM, von dem Borne, AEGK. Autoimmune hemolytic anemia. Semin Hematol 1992; 29: 3.Google Scholar
Fazio, D, Gropper, MA. Anemia and transfusion in critical care. Pulmonary Perspect 2003; 20: 4.Google Scholar
Finch, CA. Erythropoiesis, erythropoietin, and iron. Blood 1982; 60: 1241.Google Scholar
Henry, DH, Spivak, JL. Clinical use of erythropoietin. Curr Opinion Hematol 1995; 2: 118.Google Scholar
Hillmen, P, Lewis, SM, Bessler, M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995; 333: 1253.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Lopez, A, Cacoub, P, Macdougall, IC, et al. Iron deficiency anaemia. Lancet 2016; 387: 907.Google Scholar
Low, MSY, Grigoriadis, G. Iron deficiency and new insights into therapy. Med J Aust 2017; 207: 81.Google Scholar
Marmont, AM. Therapy of pure red cell aplasia. Semin Hematol 1991; 28: 285.Google Scholar
Marsh, JCW, Socie, G, Schrezenmeier, H, et al. Haemopoietic growth factors in aplastic anaemia: a cautionary note. Lancet 1994; 344: 172.Google Scholar
Means, RT. Advances in the anemia of chronic disease. Int J Hematol 1999; 70: 7.Google Scholar
Means, RT. Red blood cell function and disorders of iron metabolism. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Means, RT, Krantz, SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 1992; 80: 1639.Google Scholar
Mueller, MM, Van Remoortel, H, Meybohm, P, et al. Patient blood management: recommendations from the 2018 Frankfurt consensus conference. JAMA 2019; 321: 983.Google Scholar
Nacui, FE, Della Torre, V, Bhowmick, K. Anaemia in the critically ill. ICU Management & Practice 2021; 21: 262.Google Scholar
Otis, S, Price, EA. Hemoglobinopathies and hemolytic anemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Pasricha, SR, Flecknoe-Brown, SC, Allen, KJ, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Aust 2010; 193: 525.Google Scholar
Pearl, RG, Sibbald, WJ, eds. Anaemia and blood management in critical care. Crit Care Med 2003; 31: S649.Google Scholar
Pieracci, FM, Barie, PS. Diagnosis and management of iron-related anemias in critical illness. Crit Care Med 2006; 34: 1898.Google Scholar
Vincent, PC. Drug-induced aplastic anemia and agranulocytosis. Drugs 1986; 31: 52.Google Scholar
Vlaar, AP, Oczkowski, S, de Bruin, S, et al. Transfusion strategies in non-bleeding critically ill patients: a clinical practice guideline from the European Society of Intensive Care Medicine. Intens Care Med 2020; 46: 673.Google Scholar
Young, NS. The problem of clonality in aplastic anaemia: Dr. Damashek’s riddle, restated. Blood 1992; 79: 1385.Google Scholar
Young, NS, Meyers, G, Schrezenmeier, H, et al. The management of paroxysmal nocturnal hemoglobinuria: recent advances in diagnosis and treatment and new hope for patients. Semin Hematol 2009; 46: S1.Google Scholar

Bibliography

Boey, JP, Hahn, U, Sagheer, S, et al. Thalidomide in angiodysplasia-related bleeding. Intern Med J 2016; 45: 972.Google Scholar
Franchini, M, Mannucci, PM. Gastrointestinal angiodysplasia and bleeding in von Willebrand disease. J Thromb Haemost 2014: 112: 427.Google Scholar
Heyde, EC. Gastrointestinal bleeding in aortic stenosis. N Engl J Med 1958; 259: 196.Google Scholar
Hochter, W, Weingart, J, Kuhner, W, et al. Angiodysplasia in the colon and rectum: endoscopic morphology, localisation and frequency. Endoscopy 1985; 17: 182.Google Scholar
Hodgson, H. Hormonal therapy for gastrointestinal angiodysplasia. Lancet 2002; 359: 1630.Google Scholar
Jackson, CS, Gerson, LB. Management of gastrointestinal angiodysplastic lesions (GIADs): a systematic review and meta-analysis. Am J Gastroenterol 2014; 109: 474.Google Scholar
Randi, AM, Smith, KE, Castaman, C. Von Willebrand factor regulation of blood vessel formation. Blood 2018; 132: 132.Google Scholar
Warkentin, TE, Moore, JC, Morgan, DG. Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet 1992; 340: 35.Google Scholar

Bibliography

Agah, R, Bandi, V, Guntupalli, KK. Angioedema: the role of ACE inhibitors and factors associated with poor clinical outcome. Intens Care Med 1997; 23: 793.Google Scholar
Banerji, A, Busse, P, Shennak, M, et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med 2017; 376: 717.Google Scholar
Bas, M, Greve, J, Stelter, K, et al. A randomized trial of icatibant in ACE-inhibitor-induced angioedema. N Engl J Med 2015; 372: 418.Google Scholar
Chen, JR, Khan, DA. Urticaria and angioedema. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Colten, HR. Hereditary angioneurotic edema, 1887 to 1987. N Engl J Med 1987; 317: 43.Google Scholar
Craig, TJ, Levy, RJ, Wasserman, RL, et al. Efficacy of human C1 esterase inhibitor concentrate compared with placebo in acute hereditary angioedema attacks. J Allergy Clin Immunol 2009; 124: 801.Google Scholar
De Maat, S, Hofman, ZLM, Maas, C. Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 2018; 16: 1674.Google Scholar
Donaldson, VH, Evans, RR. A biochemical abnormality in hereditary angioneurotic edema: absence of serum inhibitor of C1-esterase. Am J Med 1963; 35: 37.Google Scholar
Frigas, E. Angioedema with acquired deficiency of the C1 inhibitor: a constellation of syndromes. Mayo Clin Proc 1989; 64: 1269.Google Scholar
Fronhoffs, S, Luyken, J, Steuer, K, et al. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Intens Care Med 2000; 26: 1566.Google Scholar
Gabb, GM, Ryan, P, Wing, LMH, et al. Epidemiological study of angioedema and ACE inhibitors. Aust NZ J Med 1996; 26: 777.Google Scholar
Javaud, N, Floccard, B, Gontier, F, et al. Bradykinin-mediated angioedema: factors associated with admission to an intensive care unit, a multicenter study. Eur J Emerg Med 2016; 23: 219.Google Scholar
LoVerde, D, Files, DC, Krishnaswamy, G. Angioedema. Crit Care Med 2017; 45: 725.Google Scholar
Nzeako, UC, Frigas, E, Tremaine, WJ. Hereditary angioedema. Arch Intern Med 2001; 161: 2417.Google Scholar
Osler, W. Hereditary angioedema. Am J Med Sci 1888; 95: 362.Google Scholar
Schmaier, AH. The contact system and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14: 28.Google Scholar
Waytes, AT, Rosen, FS, Frank, MM. Treatment of hereditary angioedema with a vapor-heated C1 inhibitor concentrate. N Engl J Med 1996; 334: 1630.Google Scholar

Bibliography

Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Franzosi, MG, Santoro, E, Zuanetti, G, et al. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation 1998; 97: 2202.Google Scholar
ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995; 345: 669.Google Scholar
Lewis, EJ, Hunsicker, LG, Bain, RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456.Google Scholar
Luiz, W, Wiemer, G, Gohlke, P, et al. Contributions of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev 1995; 47: 25.Google Scholar
Palmer, B. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. New Engl J Med 2004; 351: 585.Google Scholar
Pfeffer, MA, Lamas, GA, Vaughan, DE, et al. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988; 319: 80.Google Scholar
Pitt, B, Segal, R, Martinez, FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997; 349: 747.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
Sharpe, N, Smith, H, Murphy, J, et al. Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition. Lancet 1991; 337: 872.Google Scholar
Vaughn, DE, Pfeffer, MA. Angiotensin converting enzyme inhibitors and cardiovascular remodelling. Cardiovasc Res 1994; 28: 159.Google Scholar

Bibliography

Brown, M, Bradbury, LA. New approaches in ankylosing spondylitis. Med J Aust 2017; 206: 192.Google Scholar
Callin, A, Ellswood, J, Riggs, S, et al. Ankylosing spondylitis – an analytical review of 1500 patients: the changing pattern of disease. J Rheumatol 1988; 15: 1234.Google Scholar
Davies, D. Ankylosing spondylitis and lung fibrosis. Q J Med 1972; 41: 395.Google Scholar
Kapasi, K, Chui, B, Inman, RD. HLA-B27/microbial mimicry: an in vivo analysis. Immunology 1992; 77: 456.Google Scholar
Khan, MA. Update on spondyloarthropathies. Ann Intern Med 2002; 136: 896.Google Scholar
McEwen, C, DiTata, D, Lingg, C, et al. Ankylosing spondylitis and spondylitis accompanying ulcerative colitis, regional enteritis, psoriasis and Reiter’s disease. Arthritis Rheum 1971; 14: 291.Google Scholar
Robinson, PC, Benham, H. Advances in classification, basic mechanisms and clinical science in ankylosing spondylitis and axial spondyloarthritis. Intern Med J 2015; 45: 127.Google Scholar
Schachna, L. Dispelling the myths about ankylosing spondylitis. Intern Med J 2004; 34: 591.Google Scholar
Sheehan, NJ. The ramifications of HLA-B27. J R Soc Med 2004; 97: 10.Google Scholar
van der Linden, S, van der Heijde, D. Ankylosing spondylitis: clinical features. Rheum Dis Clin North Am 1998; 24: 663.Google Scholar

Bibliography

Gardenghi, GG, Boni, E, Todisco, P, et al. Respiratory function in patients with stable anorexia nervosa. Chest 2009; 136: 1356.Google Scholar
Gilchrist, PN, Ben-Tovim, DI, Hay, PJ, et al. Eating disorders revisited. 1: anorexia nervosa. Med J Aust 1998; 169: 438.Google Scholar
Hay, P. Current approach to eating disorders: a clinical update. Intern Med J 2020; 50: 24.Google Scholar
Herzog, DB, Greenwood, DN, Dorer, DJ, et al. Mortality in eating disorders. Int J Eat Disord 2000; 28: 20.Google Scholar
Hilbert, A, Hoeck, HW, Schmidt, R. Evidence-based clinical guidelines for eating disorders: international comparison. Curr Opin Psychiatry 2017; 30: 423.Google Scholar
Powers, PS, Santana, C. Available pharmacologic treatment for anorexia nervosa. Expert Opin Pharmacother 2004; 5: 2287.Google Scholar
Striegel-Moore, RH, Leslie, D, Petrill, SA, et al. One-year use and cost of inpatient and outpatient services among female and male patients with an eating disorder. Int J Eat Disord 2000; 27: 381.Google Scholar
Strober, M, Freeman, R, Lampert, C, et al. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry 2000; 157: 393.Google Scholar

Bibliography

Dixon, TC, Meselson, M, Guillemin, J, et al. Anthrax. New Engl J Med 1999; 341: 815.Google Scholar
Guarner, J, Jernigan, JA, Sheih, W, et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol 2003; 163: 701.Google Scholar
Hicks, CW, Sweeney, DA, Cui, X, et al. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intens Care Med 2012; 38: 1092.Google Scholar
Inglesby, TV, O’Toole, T, Henderson, DA, et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 2002; 287: 2236.Google Scholar
Keim, PS, Walker, DH, Zilinskas, RA. Time to worry about anthrax again. Sci Am 2017; 316: 61.Google Scholar
LaForce, FM. Anthrax. Clin Infect Dis 1994; 19: 1009.Google Scholar
Penn, CC, Klotz, SA. Anthrax pneumonia. Semin Respir Infect 1997; 12: 28.Google Scholar
Pile, JC, Malone, JD, Eitzen, EM, et al. Anthrax as a potential biological warfare agent. Arch Intern Med 1998; 158: 429.Google Scholar
Shafazand, S, Doyle, R, Ruoss, S, et al. Inhalational anthrax: epidemiology, diagnosis, and management. Chest 1999; 116: 1369.Google Scholar
Swartz, MN. Recognition and management of anthrax – an update. N Engl J Med 2001; 345: 1621.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Eddleston, M, Szinicz, L, Eyer, P, et al. Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. Quart J Med 2002; 95: 275.Google Scholar
Goldfrank, L, Flomenbaum, N, Levin, N, et al. Anticholinergic poisoning. J Toxicol Clin Toxicol 1982; 19: 17.Google Scholar

Bibliography

Cladwell, JE. Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg 1995; 80: 1168.Google Scholar
Davis, KL, Powchik, P. Tacrine. Lancet 1995; 345: 625.Google Scholar
Mayeux, R, Sano, M. Drug therapy: treatment of Alzheimer’s disease. N Engl J Med 1999; 341: 1670.Google Scholar
Peter, JV, Cherian, AM. Organic insecticides. Anaesth Intens Care 2000; 28: 11.Google Scholar

Bibliography

Allingstrup, M, Wetterslev, J, Ravn, FB, et al. Antithrombin III for critically ill patients: a systematic review with meta-analysis and trial sequential analysis. Intens Care Med 2016; 42: 505.Google Scholar
Fredenburgh, JC, Weitz, JI. New anticoagulants: moving beyond the direct oral anticoagulants. J Thromb Haemost 2021; 19: 20.Google Scholar
Frontera, JA, Lewin, JL, Rabinstein, AA, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: Executive summary. A statement for health care professionals from the Neurocritical Care Society and the Society of Critical Care Medicine. Crit Care Med 2016; 44: 2251.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).Google Scholar
Hirsh, J, Bauer, KA, Donati, MB, et al. Parenteral anticoagulants. Chest 2008; 133 (suppl.): 141S.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
McKenzie, J-L, Douglas, G, Bazargan, A. Perioperative management of anticoagulation in elective surgery. ANZ J Surg 2013; 83: 814.Google Scholar
Oakley, CM. Anticoagulants in pregnancy. Br Heart J 1995; 74: 107.Google Scholar
Rali, P, Gangemi, A, Moores, A, et al. Direct-acting oral anticoagulants in critically ill patients. Chest 2019; 156: 604.Google Scholar
Schaden, E, Kozek-Langenecker, SA. Direct thrombin inhibitors: pharmacology and application in intensive care medicine. Intens Care Med 2010; 36: 1127.Google Scholar
Schulman, S, Beyth, RJ, Kearon, C, et al. Hemorrhagic complications of anticoagulant and thrombolytic treatment. Chest 2008; 133 (suppl.): S257.Google Scholar
Tran, H, Joseph, J, Young, L, et al. New oral anticoagulants: a practical guide on prescription, laboratory testing and peri-procedural/bleeding management. Intern Med J 2014; 44: 525.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar
Willcox, A, Ho, L, Jones, D. Implications of direct oral anticoagulation and antiplatelet therapy in intensive care. Crit Care Resusc 2020; 22: 181.Google Scholar
Zarychanski, R, Abou-Setta, AM, Kanji, S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med 2015; 43: 511.Google Scholar

Bibliography

Arnout, J, Vermylen, J. Current status and implications of autoimmune antiphospholipid antibodies in relation to thrombotic disease. J Thromb Haemost 2003; 1: 931.Google Scholar
Asherson, RA, Cervera, R, Piette, J-C, et al. Catastrophic antiphospholipid syndrome: clinical and laboratory features of 50 patients. Medicine 1998; 77: 195.Google Scholar
Asherson, RA, Cervera, R, Piette, J-C, et al., eds. The Antiphospholipid Syndrome II: Autoimmune Thrombosis. Amsterdam: Elsevier. 2002.Google Scholar
Bick, RL. Antiphospholipid thrombosis syndromes. Clin Appl Thromb Hemost 2001; 7: 241.Google Scholar
Brey, RL. New treatment options for the antiphospholipid antibody syndrome? More pleiotropic effects of the statin drugs. J Thromb Haemost 2004; 2: 1556.Google Scholar
Brighton, TA, Chesterman, CN. The clinical significance of antiphospholipid antibodies in patients without autoimmune disease. Aust NZ J Med 2000; 30: 693.Google Scholar
Briley, DP, Coull, BM, Goodnight, SH. Neurological disease associated with antiphospholipid antibodies. Ann Neurol 1989; 25: 221.Google Scholar
Cohen, H, Efthymiou, M, Devreese, KMJ. Monitoring of anticoagulation in thrombotic antiphospholipid syndrome. J Thromb Haemost 2021; 19: 892.Google Scholar
Cowchock, FS, Reece, EA, Balaban, D, et al. Repeated fetal losses associated with antiphospholipid antibodies: a collaborative randomised trial comparing prednisolone with low dose heparin treatment. Am J Obstet Gynecol 1992; 166: 1318.Google Scholar
de Groot, PG, Derksen, RHWM. Specificity and clinical relevance of lupus anticoagulant. Vessels 1995; 1: 22.Google Scholar
de Groot, PG, Meijers, JCM. β2-Glycoprotein 1: evolution, structure and function. J Thromb Haemost 2011; 9: 1275.Google Scholar
Galli, M. The antiphospholipid triangle. J Thromb Haemost 2009; 8: 234.Google Scholar
Galve, E, Ordi, J, Barquinero, J, et al. Valvular heart disease in the primary antiphospholipid syndrome. Ann Intern Med 1992; 116: 293.Google Scholar
Giannakopoulos, B, Krilis, SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368: 1033.Google Scholar
Ginsberg, JS, Brill-Edwards, P, Johnston, M, et al. Relationship of antiphospholipid antibodies to pregnancy loss in patients with systemic lupus erythematosus. Blood 1992; 80: 975.Google Scholar
Hoi, AY, Ross, L, Day, J, et al. Immunotherapeutic strategies in antiphospholipid syndrome. Intern Med J 2017; 47: 250.Google Scholar
Hughes, GR. The antiphospholipid syndrome: ten years on. Lancet 1993; 342: 341.Google Scholar
Khamashta, MA, Cuadrado, MJ, Mujic, F, et al. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995; 332: 993.Google Scholar
Laskin, CA, Bombardier, C, Hannah, ME. Prednisolone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med 1997; 337: 148.Google Scholar
Levine, JS, Branch, W, Rauch, J. The antiphospholipid syndrome. N Engl J Med 2002; 346: 752.Google Scholar
Mezhov, V, Segan, JD, Tran, H, et al. Antiphospholipid syndrome: a clinical review. Med J Aust 2019; 211: 184.Google Scholar
Miyakis, S, Lockshin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4: 295.Google Scholar
Rand, JH, Wu, X-X, Andree, HAM, et al. Pregnancy loss in the antiphospholipid-antibody-syndrome – a possible thrombogenic mechanism. N Engl J Med 1997; 337: 154.Google Scholar
Roubey, RAS. Autoantibodies to phospholipid-binding plasma proteins: a new view of lupus anticoagulants and other ‘antiphospholipid’ autoantibodies. Blood 1994; 84: 2864.Google Scholar
Ryan, P, Street, A. Thrombosis and antiphospholipid antibodies – an evolving story. Aust NZ J Med 1993; 23: 148.Google Scholar
Wenzel, C, Stoiser, B, Locker, GJ. Frequent development of lupus anticoagulants in critically ill patients treated under intensive care conditions. Crit Care Med 2002; 30: 763.Google Scholar

Bibliography

Adgey, AA. An overview of the results of clinical trials with glycoprotein IIb/IIIa inhibitors. Am Heart J 1998; 135: S43.Google Scholar
Capodanno, D, Ferreiro, JL, Angiolillo, DJ. Antiplatelet therapy: new pharmacological agents and changing paradigms. J Thromb Haemost 2013; 11 (suppl. 1): 316.Google Scholar
Cattaneo, M. Response variability to clopidogrel: is tailored treatment, based on laboratory testing, the right solution? J Thromb Haemost 2012; 10: 327.Google Scholar
Chew, DP, Bhatt, DL. Optimizing glycoprotein IIb/IIIa inhibition: lessons from recent randomized controlled trials. Intern Med J 2002; 32: 338.Google Scholar
Coller, BS. Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb Haemost 2001; 86: 427.Google Scholar
Coller, BS, Anderson, KM, Weisman, HE. The anti-GPIIb/IIIa agents: fundamental and clinical aspects. Haemostasis 1996; 26: 285.Google Scholar
Davi, G, Patrono, C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482.Google Scholar
Gachet, C. Antiplatelet drugs: which targets for which treatments? J Thromb Haemost 2015; 13: S313.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).Google Scholar
Huxtable, LM, Tafreshi, MJ, Rakkar, AN. Frequency and management of thrombocytopenia with the glycoprotein Iib/IIIa receptor antagonists. Am J Cardiol 2006; 97: 426.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
McKenzie, J-L, Douglas, G, Bazargan, A. Perioperative management of anticoagulation in elective surgery. ANZ J Surg 2013; 83: 814.Google Scholar
Patrono, C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost 2003; 1: 1710.Google Scholar
Patrono, C, Baigent, C, Hirsh, J, et al. Antiplatelet drugs. Chest 2008; 133 (suppl.): 199S.Google Scholar
The EPIC investigation. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994; 330: 956.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar
Willcox, A, Ho, L, Jones, D. Implications of direct oral anticoagulation and antiplatelet therapy in intensive care. Crit Care Resusc 2020; 22: 181.Google Scholar

Bibliography

Eisele, B, Lamy, M, Thijs, LG, et al. Antithrombin III in patients with severe sepsis. Intens Care Med 1998; 24: 663.Google Scholar
Levi, M, ten Cate, H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586.Google Scholar
Levy, JH, Weisinger, A, Ziomek, CA, et al. Recombinant antithrombin: production and role in cardiovascular disorder. Semin Thromb Hemost 2001; 27: 405.Google Scholar
Rezale, AR, Giri, H. Antithrombin: an anticoagulant, anti-inflammatory and antibacterial serpin. J Thromb Haemost 2020; 18: 528.Google Scholar
Vinazzer, H. Antithrombin concentrates: clinical indications. Clin Appl Thromb Hemost 1998; 4: 7.Google Scholar
Wheeler, AP, Bernard, GR. Treating patients with severe sepsis. N Engl J Med 1999; 340: 207.Google Scholar

Bibliography

Arend, WP, Michel, BA, Bloch, DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990; 33: 1129.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calhoun, DA, Oparil, S. Treatment of hypertensive crisis. N Engl J Med 1990; 323: 1177.Google Scholar
Harrison, DA, McLaughlin, PR, Lazzam, C, et al. Endovascular stents in the management of coarctation of the aorta in the adolescent and adult: one year follow up. Heart 2001; 85: 561.Google Scholar
Hijazi, ZM, Geggel, R. Balloon angioplasty for postoperative recurrent coarctation of the aorta. J Interv Cardiol 1995; 8: 509.Google Scholar
Kerr, GS, Hallahan, CW, Giordano, J, et al. Takayasu arteritis. Ann Intern Med 1994; 120: 919.Google Scholar
Rothman, A. Coarctation of the aorta: an update. Curr Probl Pediatr 1998; 28: 33.Google Scholar

Bibliography

Armstrong, WE, Bach, DS, Carey, LM, et al. Clinical and echocardiographic findings in patients with suspected acute aortic dissection. Am Heart J 1998; 136: 1051.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Crawford, ES. The diagnosis and management of aortic dissection. JAMA 1990; 264: 2537.Google Scholar
DeSanctis, RW, Doroghazi, RM, Austen, WG, et al. Aortic dissection. N Engl J Med 1987; 317: 1060.Google Scholar
Hagan, PG, Nienaber, CA, Isselbacher, EM, et al. The international registry of aortic dissection (IRAD): new insights into an old disease. JAMA 2000; 283: 897.Google Scholar
Hayter, RG, Rhea, JT, Small, A, et al. Suspected aortic dissection and other aortic disorders: multidetector row CT in 373 cases in the emergency setting. Radiology 2006; 238: 841.Google Scholar
Khan, IA, Nair, CK. Clinical, diagnostic and management perspectives of aortic dissection. Chest 2002; 122: 311.Google Scholar
Mehta, RH, Suzuki, T, Hagan, PG, et al. Predicting death in patients with acute type A aortic dissection. Circulation 2002; 105: 200.Google Scholar
Treasure, T, Raphael, MJ. Investigation of suspected dissection of the thoracic aorta. Lancet 1991; 338: 490.Google Scholar
Trimarchi, S, Nienaber, CA, Rampoldi, V, et al. Contemporary results of surgery in acute type A aortic dissection: the international registry of aortic dissection experience. J Thorac Cardiovasc Surg 2005; 129: 112.Google Scholar

Bibliography

Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Milunsky, A, Ulcickas, M, Rothman, K, et al. Maternal heat exposure and neural tube defects. JAMA 1992; 268: 882.Google Scholar
Paul, KS, Lye, RH, Strang, FA, et al. Arnold-Chiari malformation. J Neurosurg 1983; 58: 183.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Duenas-Laita, A, Perez-Miranda, M, Gozalez-Lopez, M, et al. Acute arsenic poisoning. Lancet 2005; 365: 1982.Google Scholar
Kyle, RA, Pease, GL. Hematologic aspects of arsenic intoxication. N Engl J Med 1965; 273: 18.Google Scholar

Bibliography

Begbie, ME, Wallace, GM, Shovlin, CL. Hereditary hemorrhagic telangiectasia (Osler–Weber–Rendu syndrome): a view from the 21st century. Postgrad Med J 2003; 79: 18.Google Scholar
Bose, P, Holter, JL, Selby, GB. Bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med 2009; 360: 2143.Google Scholar
Brier, G. Propanolol and angiogenesis inhibition in hereditary haemorrhagic telangiectasia. Thromb Haemost 2012; 108: 1.Google Scholar
Cartin-Ceba, R, Swanson, KL, Krowka, MJ. Pulmonary arteriovenous malformations. Chest 2013; 144: 1033.Google Scholar
Dines, DE, Arms, RA, Bernatz, PE, et al. Pulmonary arteriovenous fistulas. Mayo Clin Proc 1974; 48: 460.Google Scholar
Dupuis-Girod, S, Bailly, S, Plauchu, H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost 2010; 8: 1447.Google Scholar
Gossage, JR, Kanj, G. Pulmonary arteriovenous malformations. Am J Respir Crit Care Med 1998; 158: 643.Google Scholar
Gupta, S, Faughnan, ME, Bayoumi, AM. Embolization for pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia. Chest 2009; 136: 849.Google Scholar
Guttmacher, AE, Marchuk, DA, White, RI. Hereditary hemorrhagic telangiectasia. N Engl J Med 1995; 333: 918.Google Scholar
Lacombe, P, Lagrange, C, Beauchet, A, et al. Diffuse pulmonary arteriovenous malformations in hereditary hemorrhagic telangiectasia: long-term results of embolization according to the extent of lung involvement. Chest 2009; 135: 1031.Google Scholar
Ondra, SL, Troupp, H, George, ED, et al. The natural history of symptomatic arteriovenous malformations of the brain. J Neurosurg 1990; 73: 387.Google Scholar
Sabba, C. A rare and misdiagnosed bleeding disorder: hereditary hemorrhagic telangiectasia. J Thromb Haemost 2005; 3: 2201.Google Scholar
Salaria, M, Taylor, J, Bogwitz, M, et al. Hereditary haemorrhagic telangiectasia, an Australian cohort: clinical and investigative features. Intern Med J 2014; 44: 639.Google Scholar
Shovlin, CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 2010; 24: 203.Google Scholar
Shovlin, CL, Condliffe, R, Donaldson, JW, et al. British Thoracic Society clinical statement on pulmonary arteriovenous malformations. Thorax 2017; 72: 1154.Google Scholar
Terry, PB, Barth, KH, Kaufman, SL, et al. Balloon embolization for the treatment of pulmonary arteriovenous fistulas. N Engl J Med 1980; 302: 1189.Google Scholar
White, RJ, Lynch-Nyhan, A, Terry, P, et al. Pulmonary arteriovenous malformation: techniques and long-term outcome of embolotherapy. Radiology 1988; 169: 663.Google Scholar

Bibliography

Bahlas, S, Ramos-Remus, C, Davis, P. Clinical outcome of 149 patients with polymyalgia rheumatica and giant cell arteritis. J Rheumatol 1998; 25: 99.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calabrese, L, Dune, G, Lie, J. Vasculitis in the central nervous system. Arthritis Rheum 1997; 40: 1189.Google Scholar
Denny, KJ, Kumar, A, Timsit, J-F, et al. Extra-cardiac endovascular infections in the critically ill. Intens Care Med 2020; 46: 173.Google Scholar
Deipolyi, AR, Czaplicki, CD, Oklu, R. Inflammatory and infectious aortic diseases. Cardiovasc Diagn Ther 2018; 8: 561.Google Scholar
Hamilton, CR, Shelley, WM, Tumulty, PA. Giant cell arteritis: including temporal arteritis and polymyalgia rheumatica. Medicine 1971; 50: 1.Google Scholar
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122.Google Scholar
Moore, PM. Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989; 39: 167.Google Scholar
Ninan, JV, Lester, S, Hill, CL. Giant cell arteritis: beyond temporal artery biopsy and steroids. Intern Med J 2017; 47: 1228.Google Scholar
Oz, MC, Brener, BJ, Buda, JA, et al. A ten-year experience with bacterial aortitis. J Vasc Surg 1989; 10: 439.Google Scholar
Zilko, PJ. Polymyalgia rheumatica and giant cell arteritis. Med J Aust 1996; 165: 438.Google Scholar

Bibliography

Ashbaugh, C. Septic arthritis, septic bursitis, and osteomyelitis. In: Scientific American Medicine. Infectious Diseases or Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Editorial. Reactive arthritis. BMJ 1980; 281: 311.Google Scholar
Gibofsky, A, Zabriskie, JB. Rheumatic fever and poststreptococcal reactive arthritis. Curr Opin Rheumatol 1995; 7: 299.Google Scholar
Gupta, MN, Sturrock, RD, Field, M. Prospective comparative study of patients with culture proven and high suspicion of adult onset septic arthritis. Ann Rheum Dis 2003; 62: 327.Google Scholar
Hamerman, D. The biology of osteoarthritis. N Engl J Med 1989; 320: 1322.Google Scholar
Lidgren, L, Knutson, K, Stefansdottir, A. Infection and arthritis: infection of prosthetic joints. Best Practice Res Clin Rheumatol 2003; 17: 209.Google Scholar
Smith, JW. Infectious arthritis. Infect Dis Clin North Am 1990; 4: 523.Google Scholar
Weston, VC, Jones, AC, Bradbury, N, et al. Clinical features and outcome of septic arthritis in a single UK health district 1982–1991. Ann Rheum Dis 1999; 58: 214.Google Scholar
Winblad, S. Arthritis associated with Yersinia enterocolitica infections. Scand J Infect Dis 1975; 7: 191.Google Scholar

Bibliography

Banks, DE, Shi, R, McLarty, J, et al. American College of Chest Physicians consensus statement on the respiratory health effects of asbestos. Chest 2009; 135: 1619.Google Scholar
Berry, G. Environmental mesothelioma incidence, time since exposure to asbestos and level of exposure. Environmetrics 1995; 6: 221.Google Scholar
Bowman, R, Relan, V, Hughes, B. Medical management of mesothelioma. Aust Prescriber 2011; 34: 144.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirology 2011; 16: 430.Google Scholar
Creaney, J, Robinson, BWS. Malignant mesothelioma biomarkers: from discovery to use in clinical practice for diagnosis, monitoring, screening, and treatment. Chest 2017; 152; 143.Google Scholar
Cugell, DW, Kamp, DW. Asbestos and the pleura. Chest 2004; 125: 1103.Google Scholar
Jamrozik, E, de Klerk, N, Musk, AW. Asbestos-related disease. Intern Med J 2011; 41: 372.Google Scholar
Kao, SC-H, Reid, G, Lee, K, et al. Malignant mesothelioma. Intern Med J 2010; 40: 742.Google Scholar
Mossman, BT, Bignon, J, Corn, M, et al. Asbestos: scientific developments and implications for public policy. Science 1990; 247: 294.Google Scholar
Musk, AW, de Klerk, N, Brims, FJ. Mesothelioma in Australia: a review. Med J Aust 2017; 207: 449.Google Scholar
Ohar, J, Sterling, DA, Bleecker, E, et al. Changing patterns in asbestos-induced lung disease. Chest 2004; 125: 744.Google Scholar
Olsen, NJ, Franklin, PJ, Reid, A, et al. Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust 2011; 195: 271.Google Scholar
Peto, J, Decarli, A, La Vecchia, C, et al. The European mesothelioma epidemic. Br J Cancer 1999; 79: 566.Google Scholar
Park, EK, Sandrini, A, Yates, DH, et al. Soluble mesothelin-related protein in an asbestos-exposed population: the dust diseases board cohort study. Am J Respir Crit Care Med 2008; 178: 832.Google Scholar
Pistolesi, M, Rusthoven, J. Malignant pleural mesothelioma: update, current management, and newer treatment strategies. Chest 2004; 126: 1318.Google Scholar
Ray, M, Kindler, HL. Malignant pleural mesothelioma: an update on biomarkers and treatment. Chest 2009; 136: 888.Google Scholar
Robinson, BW, Creaney, J, Lake, R, et al. Soluble mesothelin-related protein – a blood test for mesothelioma. Lung Cancer 2005; 49 (suppl. 1): S109.Google Scholar
Robinson, BW, Musk, AW, Lake, RA. Malignant mesothelioma. Lancet 2005; 366: 397.Google Scholar
Singhal, S, Kaiser, LR. Malignant mesothelioma: options for management. Surg Clin North Am 2002; 82: 797.Google Scholar
Sterman, DH, Kaiser, LR, Albelda, SM. Advances in the treatment of malignant pleural mesothelioma. Chest 1999; 116: 504.Google Scholar
Teirstein, AS. Diagnosing malignant pleural mesothelioma. Chest 1998; 114: 666.Google Scholar
van Ruth, S, Baas, P, Zoetmulder, FA. Surgical treatment of malignant pleural mesothelioma: a review. Chest 2003; 123: 551.Google Scholar
Zellos, LS, Sugarbaker, DJ. Multimodality treatment of diffuse malignant pleural mesothelioma. Semin Oncol 2002; 29: 41.Google Scholar

Bibliography

Agarwal, R. Allergic bronchopulmonary aspergillosis. Chest 2009; 135: 805.Google Scholar
Chatzimichalis, A, Massard, G, Kessler, R, et al. Bronchopulmonary aspergilloma: a reappraisal. Ann Thorac Surg 1998; 65: 927.Google Scholar
Douglas, AP, Smibert, OC, Bajel, A, et al. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51: 143.Google Scholar
Janssen, JJWM, Strack van Schijndel, RJM, van der Poest Clement, EH, et al. Outcome of ICU treatment in invasive aspergillosis. Intens Care Med 1996; 22: 1315.Google Scholar
Koulenti, D, Vogelaers, D, Blot, S. What’s new in invasive pulmonary aspergillosis in the critically ill. Intens Care Med 2014; 40: 723.Google Scholar
Levitz, SM. Aspergillosis. Infect Dis Clin North Am 1989; 3: 1.Google Scholar
Oakley, EJ, Petrou, M, Goldstraw, P. Indications and outcome of surgery for pulmonary aspergilloma. Thorax 1997; 52: 813.Google Scholar
Patterson, KC, Strek, ME. Diagnosis and treatment of pulmonary aspergillosis syndromes. Chest 2014; 146: 1358.Google Scholar
Ricketti, AJ, Greenberger, PA, Mintzer, RA, et al. Allergic bronchopulmonary aspergillosis. Arch Intern Med 1983; 143: 1553.Google Scholar
Schuyler, MR. Allergic bronchopulmonary aspergillosis. Clin Chest Med 1983; 4: 15.Google Scholar
Soubani, AO, Chandrasekar, PH. The clinical spectrum of pulmonary aspergillosis. Chest 2002; 121: 1988.Google Scholar
Stevens, DA, Schwartz, HJ, Lee, JY, et al. A randomized trial of itraconazole in allergic bronchopulmonary aspergillosis. N Engl J Med 2000; 342: 756.Google Scholar

Bibliography

Baron, SE, Haramati, LB, Rivera, VT. Radiological and clinical findings in acute and chronic exogenous lipoid pneumonia. J Thorac Imaging 2003; 18: 217.Google Scholar
DiBardino, DM, Wunderink, RG. Aspiration pneumonia: a review of modern trends. J Crit Care 2015; 30: 40.Google Scholar
Hu, X, Lee, JS, Pianosi, PT, et al. Aspiration-related pulmonary syndromes. Chest 2015; 147: 815.Google Scholar
Lee, A, Festic, E, Park, PK, et al. Characteristics and outcomes of patients hospitalized following pulmonary aspiration. Chest 2014; 146: 899.Google Scholar
Marik, PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001; 344: 665.Google Scholar
Rimawi, RH. Distinguishing pneumonia from pneumonitis to safely discontinue antibiotics. Crit Care Med 2017; 45: 1408.Google Scholar
Samhouri, BF, Tandon, YK, Hartman, TE, et al. Presenting clinicoradiologic features, causes, and clinical course of exogenous lipoid pneumonia in adults. Chest 2021; 160: 624.Google Scholar
Wright, BA, Jeffrey, PH. Lipoid pneumonia. Semin Respir Infect 1990; 5: 314.Google Scholar

Bibliography

Casey, JD, Semler, MW, Bastarache, JA. Aspirin for sepsis prevention: an ounce of prevention? Crit Care Med 2017; 45: 1959.Google Scholar
Chen, W, Janz, DR, Bastarache, JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med 2015; 43: 801.Google Scholar
Eisen, DP. Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on sepsis. Intens Care Med 2012; 38: 1249.Google Scholar
Gabow, P, Anderson, RJ, Potts, DE, et al. Acid-base disturbances in the salicylate-intoxicated adult. Arch Intern Med 1978; 138: 1481.Google Scholar
Heffner, JE, Sahn, SA. Salicylate-induced pulmonary edema. Ann Intern Med 1981; 95: 405.Google Scholar
Heptinstall, S. How important is it to keep taking the aspirin? Thromb Haemost 2013; 110: 1298.Google Scholar
Hill, JB. Salicylate intoxication. N Engl J Med 1973; 288: 1110.Google Scholar
Leatherman, JW, Schmitz, PG. Fever, hyperdynamic shock, and multiple-system organ failure: a pseudo-sepsis syndrome associated with chronic salicylate intoxication. Chest 1991; 100: 1391.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Namazy, JA, Simon, RA. Sensitivity to nonsteroidal anti-inflammatory drugs. Ann Allergy Asthma Immunol 2002; 89: 542.Google Scholar
Prescott, LF, Balali-Mood, M, Critchley, JA, et al. Diuresis or urinary alkalinisation for salicylate poisoning? BMJ 1982; 285: 1383.Google Scholar
Temple, AR. Acute and chronic effects of aspirin toxicity and their treatment. Arch Intern Med 1981; 141: 364.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Asthma Management Handbook. Melbourne: National Asthma Council Australia. 2006.Google Scholar
Barrett, GE, Koopman, CF, Coulthard, SW. Retropharyngeal abscess. Laryngoscope 1984; 94: 455.Google Scholar
Bush, A, Pavord, JD. The Lancet Asthma Commission: towards the abolition of asthma? Eur Med J 2018; 3: 10.Google Scholar
Clayton-Chubb, D. Hidden risk population for thunderstorm asthma. Med J Aust 2017; 206: 280.Google Scholar
Draikiwicz, S, Oppenheimer, J. Use of biological agents in asthma: pharmacoeconomic lessons learned from omalizumab. Chest 2017; 151: 249.Google Scholar
Editorial. Cardiac asthma. Lancet 1990; 335: 693.Google Scholar
Ernst, A, Rafeq, S, Boiselle, P, et al. Relapsing polychondritis and airway involvement. Chest 2009; 135: 1024.Google Scholar
Gibson, PG, McDonald, VM. Management of severe asthma: targeting the airways, comorbidities and risk factors. Intern Med J 2017; 47: 623.Google Scholar
Hew, M, Sutherland, M, Thien, F, et al. The Melbourne thunderstorm asthma event: can we avert another strike? Intern Med J 2017; 47: 485.Google Scholar
Kryger, M, Bode, F, Antic, R, et al. Diagnosis of obstruction of the upper and central airways. Am J Med 1976; 61: 85.Google Scholar
Lindstrom, SJ, Silver, JD, Sutherland, MF, et al. Thunderstorm asthma outbreak of November 2016: a natural disaster requiring planning. Med J Aust 2017; 207: 235.Google Scholar
Maciag, MC, Phipatanakul, W. Prevention of asthma: targets for intervention. Chest 2020; 158: 913.Google Scholar
Martin, RJ, Kraft, M, eds. Asthma in the new millennium. Chest 2002; 123 (suppl.): 339S.Google Scholar
Mayo-Smith, M, Hirsch, PJ, Wodzinski, SF, et al. Acute epiglottitis in adults. N Engl J Med 1986; 314: 1133.Google Scholar
McCaughan, BC, Martini, N, Bains, MS. Bronchial carcinoids. J Thorac Cardiovasc Surg 1985; 89: 8.Google Scholar
Murray, DM, Lawler, PG. All that wheezes is not asthma: paradoxical vocal cord movement presenting as severe acute asthma requiring ventilatory support. Anaesthesia 1998; 53: 1006.Google Scholar
Papi, A, Brightling, C, Pedersen, SE, et al. Asthma. Lancet 2018; 391: 783.Google Scholar
Pavord, JD, Beasley, R, Agusti, A, et al. After asthma: redefining airways disease. Lancet 2018; 391: 350.Google Scholar
Randall, KW, Spiering, BA. Inspiratory stridor in elite athletes. Chest 2003; 123: 468.Google Scholar
Reddel, HK. Common conditions that mimic asthma. Med J Aust 2022; 216: 337.Google Scholar
Shapiro, J, Eavey, RD, Baker, AS. Adult supraglottitis: a prospective analysis. JAMA 1988; 259: 563.Google Scholar
Schoettler, N, Strek, ME. Recent advances in severe asthma: from phenotypes to personalized medicine. Chest 2020; 157: 516.Google Scholar
Upham, J, Gibson, P, Silverstone, Z, eds. Severe asthma in Australia. Med J Aust 2018; 209: Suppl.Google Scholar
Wenzel, SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18: 716.Google Scholar

Bibliography

Cavallazzi, R, Nair, A, Vasu, T, et al. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intens Care Med 2008; 34: 2147.Google Scholar
Davidson, NC, Naas, AA, Hanson, JK, et al. Comparison of atrial natriuretic peptide, B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular dysfunction. Am J Cardiol 1996; 77: 828.Google Scholar
de Denus, S, Pharand, C, Williamson, DR. Brain natriuretic peptide in the management of heart failure: the versatile neurohormone. Chest 2004; 125: 652.Google Scholar
Diringer, M, Ladenson, PW, Stern, BJ, et al. Plasma atrial natriuretic factor and subarachnoid hemorrhage. Stroke 1988; 19: 1119.Google Scholar
Jason, P, Keang, LT, Hoe, LK. B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 2005; 33: 2094.Google Scholar
Levin, ER, Gardner, DG, Samson, WK. Natriuretic peptides. N Engl J Med 1998; 339: 321.Google Scholar
Moores, LK. CHF or COPD: can BNP decide? Pulmonary Perspect 2004; 21: 1: 4.Google Scholar
Mueller, C, Scholer, A, Laule-Kilian, K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnoea. N Engl J Med 2004; 350: 647.Google Scholar
Needleman, P, Greenwald, JE. Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis. N Engl J Med 1986; 314: 828.Google Scholar
Phua, J, Jason, P, Lim, TK, et al. B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 2005; 33: 2094.Google Scholar
Stein, BC, Levin, RI. Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J 1998; 135: 914.Google Scholar
Sudoh, T, Kangawa, K, Minamino, N, et al. A new natriuretic peptide in porcine brain. Nature 1988; 332: 78.Google Scholar
Suttner, SW, Boldt, J. Natriuretic peptide system: physiology and clinical utility. Curr Opin Crit Care 2004; 10: 336.Google Scholar
Sward, K, Valsson, F, Odencrants, P, et al. Recombinant human atrial natriuretic peptide in ischaemic acute renal failure. Crit Care Med 2004; 32: 1310.Google Scholar
Wei, C-M, Heublein, DM, Perrella, MA, et al. Natriuretic peptide system in human heart failure. Circulation 1993; 88: 1004.Google Scholar
Yap, LB, Mukerjee, D, Timms, PM, et al. Natriuretic peptides, respiratory disease, and the right heart. Chest 2004; 126: 1330.Google Scholar

Bibliography

Abbas, AK, Lichtman, AHH, Pillai, S. Cellular and Molecular Immunology. 9th edition. Amsterdam: Elsevier. 2017.Google Scholar
Austen, KF, Burakoff, SJ, Rosen, FS, et al., eds. Therapeutic Immunology. 2nd edition. Cambridge: Blackwell. 2001.Google Scholar
Davies, PJ, Martin, SJ, Burton, DR, et al. Roitt’s Essential Immunology. 13th edition. Hoboken: Wiley 2018.Google Scholar
Dwyer, JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326: 107.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Naparstek, Y, Plotz, PH. The role of autoantibodies in autoimmune disease. Annu Rev Immunol 1993; 11: 79.Google Scholar
Nossal, GJV. Immunologic tolerance: collaboration between antigen and lymphokines. Science 1989; 245: 147.Google Scholar
Reimann, PM, Mason, PD. Plasmapheresis: technique and complications. Intens Care Med 1990; 16: 3.Google Scholar
Shoenfeld, Y, Meroni, PI, Gershwin, M, eds. Autoantibodies. 3rd edition. Amsterdam: Elsevier. 2013.Google Scholar
Tan, EM. Autoantibodies in pathology and cell biology. Cell 1991; 67: 841.Google Scholar
Various. The body against itself. Sci Am 2021; 325: 22.Google Scholar
Yu, Z, Lennon, VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340: 227.Google Scholar

Bibliography

Naftchi, NE, Richardson, JS. Autonomic dysreflexia: pharmacological management of hypertensive crises in spinal cord injured patients. J Spinal Cord Med 1997; 20: 355.Google Scholar
Showkathali, R, Antionios, TFT. Autonomic dysreflexia: a medical emergency. J R Soc Med 2007; 100: 382.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • A
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • A
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • A
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×