Published online by Cambridge University Press: 26 February 2010
Many different mathematical tools have been used for modeling concurrent systems. One of the most common is Petri nets. This chapter focuses on their use in architectural performance analysis and the optimization of asynchronous pipelines. In later chapters we will discuss the more specific forms of Petri nets used in specifying asynchronous controllers for automated synthesis. In addition, we will also use Petri nets to describe the abstract behavior of various implementation templates. More extensive analyses of Petri nets can be found in references.
Petri nets
A Petri net is a four-tuple N = (P, T, F, m0), where P is a finite set of places pi and T is a finite set of transitions ti (see Figure 5.1); F ⊆ (P × T) ∪ (T × P) is a flow relation and m0 ∈ N|P| is the initial marking (see below), where N is the set of natural numbers. As can be seen in the figure, a Petri net is usually represented as a bipartite graph in which the pi and ti are the nodes. For any two nodes x and y, if (x, y) ∈ F then there is a directed arc from x to y. An arc runs between a place and a transition or between a transition and a place, but arcs do not run between two places or two transitions.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.