Published online by Cambridge University Press: 26 February 2010
As mentioned in Chapter 7, in delay-insensitive (DI) design it is assumed that the delays of the composite gates and wires can be unbounded and thus the circuits will work correctly for any arbitrary set of time-varying gate and wire delays. This is the most conservative and robust delay model, but it has been shown that it is not very practical because very few DI circuits exist. Therefore the notion of quasi-delay-insensitive (QDI) circuits has been developed. These circuits work correctly regardless of the values of the delays in the gates and wires, except for those associated with wire forks designated isochronic. By definition, the difference in the times at which a signal arrives at the ends of an isochronic fork is assumed to be less than the minimum gate delay. If these isochronic forks are guaranteed to be physically localized to a small region, this assumption can be easily met and the circuits can be practically as robust as DI circuits. This chapter covers a variety of QDI templates designed with pipelined handshaking. Note, however, that the QDI model is also used in circuits that implement enclosed handshaking (see Chapter 8) and has been extended to include the assumption of isochronic propagation through a number of logic gates.
Weak-conditioned half buffer
The first QDI template we will cover is the weak-conditioned half buffer (WCHB).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.