Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T13:38:16.635Z Has data issue: false hasContentIssue false

16 - Developmental plasticity in the dentition of a heterodont polyphyodont fish species

Published online by Cambridge University Press:  11 September 2009

Mark F. Teaford
Affiliation:
The Johns Hopkins University
Moya Meredith Smith
Affiliation:
Guy's Hospital, London
Mark W. J. Ferguson
Affiliation:
University of Manchester
Get access

Summary

Introduction

The dentition has long been, and still is, important to vertebrate biologists: to palaeontologists, because teeth often represent the sole fossil evidence available; to taxonomists, because of the estimated high taxonomic value of teeth; and to developmental biologists, because teeth provide an excellent experimental model to test developmental principles. Yet, relatively little attention has been paid in these various disciplines to intraspecific variation and the relative roles played by the genome and the environment to generate this variation. Can developmental processes leading to a species-specific, predictable outcome (i.e. a dental unit of specific size, shape, etc.) be modified in the course of an organism's ontogeny by changes in the external environment to produce a unit of different size, shape, etc., with respect to what is ‘normal’ for the species? In other words can the dentition exhibit environmentally induced phenotypic variation?

The subject of phenotypic plasticity has gained much interest in vertebrate biology in the past 15 years. Phenotypic plasticity, as opposed to genetic polymorphism, covers all types of environmentally induced phenotypic variation (Stearns, 1989) and is defined as the ability of an individual to respond to changes in the environment in terms of its anatomy, physiological state and/or behaviour (Smits, 1996). In this chapter I am primarily concerned with plasticity related to changes in prey type and/or the way it is processed. What changes can we expect in tooth number, position, size and shape in relation to a changing function?

Studies on dental variation have largely concentrated on mammals (cf. Miles and Grigson, 1990).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×