Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-20T22:21:23.984Z Has data issue: false hasContentIssue false

18 - Pathways to functional differentiation in mammalian enamel

Published online by Cambridge University Press:  11 September 2009

Mark F. Teaford
Affiliation:
The Johns Hopkins University
Moya Meredith Smith
Affiliation:
Guy's Hospital, London
Mark W. J. Ferguson
Affiliation:
University of Manchester
Get access

Summary

Introduction

Dental morphology has been the most important source of data for the interpretation of both phyletic relationships and dietary behaviors of extinct mammals. Differences in gross dental shape have traditionally contributed most of this information, although the complexity of enamel structure was recognized in the last century as subsequently were patterns of enamel microstructural differences among diverse mammalian taxa (Kawai, 1955).

However, it has only been in recent years that relationships of enamel microstructure to dental function have been identified (Walker et al., 1978; Koenigswald, 1980; Rensberger and Koenigswald, 1980; Pfretzschner, 1988; Maas, 1991). The organization of the enamel microstructure is now known to have an adaptive relationship to the stresses generated during mastication and other uses of the teeth, indicating that these structures can be used to make inferences about differences in dietary behavior in extinct taxa.

An increased interest in enamel structure in the past two decades is contributing to a greatly expanded knowledge of the microstructure. As the structures in larger numbers of taxa have been clarified, the diversity of known microstructural conditions has increased. This has resulted in an increasingly complex picture of phyletic evolution that is clearly not explained by one-to-one relationships of structure and diet. For example, some highly specialized structural conditions occur in unrelated living taxa with quite different gross dental specializations and dietary behaviors. Nevertheless, even in such cases there may be functional components that are shared and may explain the microstructural similarities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×