Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T14:50:46.050Z Has data issue: false hasContentIssue false

8 - Examining Cognitive Development Using Psychophysiological Correlates: Evidence of a Hierarchy of Future-Oriented Processes Across Measures

from SECTION TWO - AUTONOMIC AND PERIPHERAL SYSTEMS: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

W. Keith Berg
Affiliation:
Professor of Psychology University of Florida
Dana L. Byrd
Affiliation:
Postdoctoral Fellow in the Department of Psychobiology Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

In order to effectively function in the world, it is critical that we be able to prepare for future events. The “future” event can be anything from events that will happen in a few seconds to events that will happen in days, weeks, or months. A very general term that has been applied to such abilities or activities is “future-oriented processes” (Haith, Benson, Roberts, & Pennington, 1994). Often we are aware that an event is going to take place in the future due to a warning event. Information inherent in the warning event itself or information from our past experience with that warning event can inform us about both the nature and the timing of the upcoming event. For example, when the traffic light turns yellow, from past experience we know it soon will turn red and approximately how long this will take. In cases when we have knowledge about or experience with the future event we can not only tailor our anticipation or preparation regarding the nature of the upcoming event, but we can also time them so to be optimally ready when the event occurs, and not too early or too late to be effective.

Among the most pervasive and effective paradigms used in the investigations of these future-oriented processes is the simple paired-stimulus or S1-S2 paradigm. In the typical use of this paradigm an initial stimulus or event with minimal inherent significance is followed after a fixed duration by a more significant stimulus or event.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 213 - 256
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aman, C. J., Roberts, R. J. Jr., & Pennington, B. F. (1998). A neuropsychological examination of the underlying deficit in attention deficit hyperactivity disorder: Frontal lobe versus right parietal lobe theories. Developmental Psychology, 34, 956–969.CrossRefGoogle ScholarPubMed
Anthony, B. J., Butler, G. H. & Putnam, L. E. (1978). Probe startle inhibition during HR deceleration in a forewarned RT paradigm. [Abstract]. Psychophysiology, 15, 285.Google Scholar
Anthony, B. J. & Putnam, L. E. (1985). Cardiac and blink reflex concomitants of attentional selectivity: A comparison of adults and young children. Psychophysiology, 22, 508–516.Google Scholar
Austin, G. J., Berg, W. K., & Fields, H. (1996). Slow cortical positivity in 6-year-old children during an S1-S2 paradigm. [Abstract]. Psychophysiology, 33, S20.Google Scholar
Baddeley, A. (1998). The central executive: A concept and some misconceptions. Journal of the International Neuropsychological Society, 4, 523–526.CrossRefGoogle ScholarPubMed
Bareš, M., & Rektor, I. (2001). Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clinical Neurophysiology, 112, 2022–2030.CrossRefGoogle ScholarPubMed
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37, 44–56.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Basile, L. F., Ballester, G., Castro, C. C., & Gattaz, W. F. (2002). Multifocal slow potential generation revealed by high-resolution EEG and current density reconstruction. International Journal of Psychophysiology, 45, 227–240.CrossRefGoogle ScholarPubMed
Berg, W. K., Adkinson, C. D., & Strock, B. D. (1973). Duration and frequency of periods of alertness in neonates. Developmental Psychology, 9, 434.CrossRefGoogle Scholar
Berg, W. K., & Balaban, M. T. (1999). Startle elicitation: Stimulus parameters, recording techniques, and quantification. In Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 21–50). New York: Cambridge University Press.CrossRefGoogle Scholar
Berg, W. K., & Berg, K. M. (1987). Psychophysiological development in infancy: State, startle and attention. In Osofsky, J. (Ed.) Handbook of Infant Development(2nd ed., pp. 238–317). New York: John Wiley & Sons.Google Scholar
Berg, W. K., & Richards, J. (1997). Attention across time in infant development. In Lang, P., Balaban, M., & Simons, R. (Eds.), Attention and Orienting: Sensory and Motivational Processes (pp. 347–368). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.CrossRefGoogle ScholarPubMed
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & Boxtel, A. (2005). Committee report: Guidelines for human startle eyeblink electromygraphic studies. Psychophysiology, 42, 1–15.CrossRefGoogle Scholar
Bohlin, G., & Kjellberg, A. (1979). Orienting activity in two-stimulus paradigms as reflected in heart rate. In Kimmel, H. D., Olst, E. H., & Orlebeke, J. E. (Eds.), The orienting response in humans (pp. 169–195). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bondi, M. W., Houston, W. S., Salmon, D. P., Corey-Bloom, J., Katzman, R., Thal, L. J., & Delis, D. C. (2003). Neuropsychological deficits associated with Alzheimer's disease in the very-old: Discrepancies in raw vs. standardized scores. Journal of the International Neuropsychological Society, 9, 783–795.CrossRefGoogle ScholarPubMed
Boswell, A., Garner, E. E., & Berg, W. K. (1994) Changes in cardiac components of anticipation in 2, 4, and 8-month infants, Psychophysiology, 31.Google Scholar
Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1990). Startle reflex modification: Emotion or Attention?Psychophysiology, 27, 513–522.CrossRefGoogle ScholarPubMed
Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1999). Affect and the startle reflex. In Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 157–183). New York: Cambridge University Press.CrossRefGoogle Scholar
Brandimonte, M., Einstein, G. O., & McDaniel, M. A. (1996). Prospective memory: Theory and applications. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Brooks, P., & Berg, W. K. (1979). Do 16-week-old infants anticipate stimulus offsets?Developmental Psychobiology, 12, 329–334.CrossRefGoogle ScholarPubMed
Brunia, C. H. M., & Boxtel, G. J. M. (2001). Wait and see. International Journal of Psychophysiology, 43, 59–75.CrossRefGoogle ScholarPubMed
Byrd, D. L., Austin, A. J., & Berg, W. K. (1997). Contingent negative variation: Clarifying the course of development. [Abstract]. Psychophysiology, 34, S26.Google Scholar
Byrd, D. L., & Berg, W. K. (2002). The relationship between age and the preparatory heart rate response: Childhood through adulthood. Biological Psychology, 61, 271–276.CrossRefGoogle ScholarPubMed
Casey, B. J., Durston, S., & Fosella, J. A. (2001). Evidence of a mechanistic model of cognitive control. Clinical Neuroscience Research, 1, 267–282.CrossRefGoogle Scholar
Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., Castellanos, F. X., Haxby, J. V., Noll, D. C., Cohen, J. D., Forman, S. D., Dahl, R. E., & Rapoport, J. L. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of Cognitive Neuroscience, 9, 835–847.CrossRefGoogle ScholarPubMed
Clifton, R. K. (1974). Heart rate conditioning in the newborn infant. Journal of Experimental Child Psychology, 18, 9–21.CrossRefGoogle ScholarPubMed
Cohen, J. (1973). The CNV in children with special reference to learning disabilities. EEG and Clinical Neurophysiology, 33S, 151–154.Google Scholar
Davies, M. B. (1985). Infants' responses to temporally regular events and their omission. Unpublished Doctoral Dissertation, University of Florida, Gainesville, FL.Google Scholar
Dawson, M. E., Schell, A. M., & Böhmelt, A. H. (1999). Startle modification: Implications for neuroscience, cognitive science, and clinical science. New York: Cambridge University Press.CrossRefGoogle Scholar
Luca, C. R., Wood, S. J., Anderson, V., Buchanan, J., Proffitt, T. M., Mahony, K., & Pantelis, C. (2003). Normative data from the Cantab. I: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25, 242–254.CrossRefGoogle ScholarPubMed
Dennis, S. S., & Mulcahy, R. F. (1980). Heart-rate changes during covert rehearsal and response execution. Perceptual and Motor Skills, 50, 595–602.CrossRefGoogle ScholarPubMed
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.CrossRefGoogle ScholarPubMed
Donohue, R. L. (1991). Seven-month-olds' display of anticipatory heart rate decelerations in an S1+/S1- fixed fore-period paradigm. Unpublished Doctoral Dissertation, University of Florida, Gainesville, FL.Google Scholar
Donohue, R. L., & Berg, W. K. (1991). Infant heart-rate responses to temporally predictable and unpredictable events. Developmental Psychology, 27, 59–66.CrossRefGoogle Scholar
Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & Engeland, H. (2001). Anatomical MRI of the developing human brain: What have we learned?Journal of the American Academy of Child and Adolescent Psychiatry, 40, 1012–1020.CrossRefGoogle ScholarPubMed
Garner, E. E. (1993). Effects of a speeded motor task on cardiac and startle indices of anticipation in 5-year-old children. Unpublished Master's Thesis, University of Florida, Gainesville, FL.Google Scholar
Garner, E. E. (1998). Follow your head (and your heart?): Cardiac and motor indices of anticipation in 15-month-old infants in a two- alternative, cued location memory task. Dissertation Abstracts International: Section B: The Sciences & Engineering Univ. Microfilms International, 58, 3944.Google Scholar
Garner, E. E., & Berg, W. K. (1993) Effects of speeded motor tasks on cardiac and startle indices of anticipation in 5-year-old children. [Absract]. Psychophysiology, 30, S29.Google Scholar
Graham, F. K., & Clifton, R. K. (1966). Heart-rate change as a component of the orienting response. Psychological Bulletin, 65, 305–320.CrossRefGoogle ScholarPubMed
Graham, F. K., Putnam, L. E. & Leavitt, L. A. (1975). Lead-stimulation effects on human cardiac orienting and blink reflexes. Journal of Experimental Psychology: Human Perception and Performance, 204, 161–169.Google Scholar
Griffin, C. J., Davis, L. J., Berg, W. K., & Garner, E. E. (1995). Anticipation in 3 and 5-yr-old children: Cardiac responses while awaiting a cued, interesting event. Paper presented at the Biennial Meeting of the Society for Research in Child Development. Indianapolis, IN.Google Scholar
Haith, M. M., Benson, J. B., Roberts, R. J. Jr., & Pennington, B. F. (1994). The development of future-oriented processes. Chicago, IL: University of Chicago Press.Google Scholar
Hatayama, T., Yamaguchi, H., & Ohyama, M. (1981) Cardiac response patterns during a foreperiod in reaction time tasks. Tohoku Psychologica Folia, 40, 137–145.Google Scholar
Jennings, J. R., Berg, W. K., Obrist, P., Hutcheson, J. H., Porges, S. & Turpin, G. (1981). Publication guidelines for heart rate studies in man. Psychophysiology, 18, 226–231.CrossRefGoogle ScholarPubMed
Jennings, J. R., & Matthews, K. A. (1984). The impatience of youth: Phasic cardiovascular response in Type A and Type B elementary school-aged boys. Psychosomatic Medicine, 46, 498–511.CrossRefGoogle ScholarPubMed
Keen, R. E., Chase, H. H., & Graham, F. K. (1965). Twenty-four hour retention by neonates of an habituated heart rate response. Psychonomic Science, 2, 265–266.CrossRefGoogle Scholar
Klorman, R. (1975). Contingent negative variation and cardiac deceleration in a long preparatory interval: A developmental study. Psychophysiology, 12, 609–617.CrossRefGoogle Scholar
Klorman, R., & Lang, P. J. (1972). Cardiac responses to signal and nonsignal tasks in 9-year-olds. Psychonomic Science, 28, 299–300.CrossRefGoogle Scholar
Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50, 372–385.CrossRefGoogle ScholarPubMed
Lawler, K. A., Obrist, P. A., & Lawler, J. E. (1978). Cardiac and somatic response patterns during a reaction time task in children and adults. Psychophysiology, 13, 448–455.CrossRefGoogle Scholar
Lipp, O. V. (2002). Anticipation of a non-aversive reaction time task facilitates the blink startle reflex. Biological Psychology, 59, 147–162.CrossRefGoogle ScholarPubMed
Lipp, O. V., Siddle, D. A. T., & Dall, P. J. (1998). Effects of stimulus modality and task condition on blink startle modification and on electrodermal responses. Psychophysiology, 35, 542–461.CrossRefGoogle ScholarPubMed
Low, M. D., Borda, R. P., Frost, J. D. Jr., & Kellaway, P. (1966). Surface-negative, slow potential shift associated with conditioning in man. Neurology, 16, 771–782.CrossRefGoogle Scholar
Low, M. D., & Stoilen, L. (1973). CNV and EEG in children: Maturational characteristics and findings in the MCD syndrome. EEG and Clinical Neurophysiology, 33S, 139–143.Google Scholar
Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
McNamara, J. P. H. (2003). Preschoolers' use of a holding peg strategy on the Tower of London. Unpublished Master's Thesis, University of Florida, Gainesville, FL.Google Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.CrossRefGoogle ScholarPubMed
Pruel, M. W., Gabrieli, J. K. E., & Bunge, S. A. (2000). Age-related changes in memory: A cognitive neuroscience perspective. In Craik, F. I. M., & Salthouse, T. (Eds.), The handbook on aging and cognition (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Putnam, L. E. (1990). Great expectations: Anticipatory responses of the heart and brain. In Rohrbaugh, J. W., & Parasuraman, R. (Eds.), Event-related brain potentials: Basic issues and applications (pp. 109–129). New York: Oxford University Press.Google Scholar
Rohrbaugh, J. W., Dunham, D. N., Stewart, P. A., Bauer, L. O., Kuperman, S., Conner, S. J., Porjesz, B., & Henri Begleiter, H. (1997). Slow brain potentials in a visual-spatial memory task: Topographic distribution and inter-laboratory consistency. International Journal of Psychophysiology, 25, 111–122.CrossRefGoogle Scholar
Ruchkin, D. S., Johnson, R. Jr., Canoune, H., & Ritter, W. (1991). Event-related potentials during arithmetical and mental rotation. Electroencephalography and Clinical Neurophysiology, 79, 473–487.CrossRefGoogle Scholar
Ruchkin, D. S., Johnson, R. Jr., Grafman, J., Canoune, H., & Ritter, W. (1997). Multiple visiuospatial working memory buffers: Evidence from spaiotemporal patterns of brain activity. Neuropsychologia, 35, 195–209.CrossRefGoogle ScholarPubMed
Segalowitz, S. J., Unsal, A., & Dywan, J. (1992). Cleverness and wisdom in 12-year-olds: Electrophysiological evidence for late maturation of the frontal lobe. Developmental Neuropsychology, 8, 279–298.CrossRefGoogle Scholar
Siegler, R. S. (1996). Emerging minds: The process of change in children's thinking. New York: Oxford University Press.Google Scholar
Sokolov, Y. N. (1963). Perception and the conditioned reflex. New York: Pergamon Press.Google Scholar
Stamps, L. E. (1977). Temporal conditioning of heart rate responses in newborn infants. Developmental Psychology, 13, 624–629.CrossRefGoogle Scholar
Weerts, T. C., & Lang, P. J. (1973). The effects of eye fixation and stimulus response location on the contingent negative variation (CNV). Biological Psychology, 1, 1–19.CrossRefGoogle Scholar
Welsh, M. C., Satterlee-Cartmell, T., & Stine, M. (1999). Towers of Hanoi and London: Contribution of working memory and inhibition to performance. Brain and Cognition, 41, 231–242.CrossRefGoogle ScholarPubMed
West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×