Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T02:09:24.941Z Has data issue: false hasContentIssue false

9 - Measuring the Electromyographic Startle Response: Developmental Issues and Findings

from SECTION TWO - AUTONOMIC AND PERIPHERAL SYSTEMS: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Marie T. Balaban
Affiliation:
Professor of Psychology Eastern Oregon University
W. Keith Berg
Affiliation:
Professor of Psychology University of Florida
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

A sudden noise occurs while you are concentrating and you respond quickly and automatically – your body muscles flex, your eyes blink, and your facial expression registers a grimace of surprise. You have just experienced a startle reflex. The startle reflex (or startle response) is commonly measured in research studies by a blink response in humans, elicited by some startling stimulus such as a loud noise. The blink response is an early and reliable component of startle in humans. It occurs to stimuli in various sensory modalities (e.g., auditory, visual, cutaneous) and often begins within 30 ms after the onset of a sudden and intense stimulus.

The word “reflex” often seems to bring to mind a stable, simple, and unchanging response elicited under specific circumstances. But in the case of the startle reflex, this view is overly simplistic. Though this reflex can be reliably elicited, it turns out to also be highly modifiable by an extensive variety of stimuli, circumstances, and clinical conditions. The wide range of studies examining this process of modification is generally referred to as startle modification research. Fundamentally, the paradigms employed in this research involve situations in which the startle reflex is modulated or modified in amplitude, latency, or probability by another non-startling variable of interest. The remarkably wide range of factors that can modify startle is what has generated such a broad interest in its study.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 257 - 285
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, B. J., & Graham, F. K. (1983). Evidence for sensory-selective set in young infants. Science, 220, 742–744.CrossRefGoogle ScholarPubMed
Anthony, B. J., Zeigler, B. L., & Graham, F. K. (1987). Stimulus duration as an age-dependent factor in reflex blinking. Developmental Psychobiology, 20, 285–297.CrossRefGoogle ScholarPubMed
Balaban, M. T. (1995). Affective influences on startle in five-month-old infants: Reactions to facial expressions of emotion. Child Development, 66, 28–36.CrossRefGoogle Scholar
Balaban, M. T. (1996). Probing basic mechanisms of sensory, attentional, and emotional development: Modulation of the infant blink response. In Rovee-Collier, C. & Lipsitt, L. P. (Eds.), Advances in infancy research (Vol. 10, pp. 219–256). Norwood, NJ: Ablex.Google Scholar
Balaban, M. T., Anthony, B. J., & Graham, F. K. (1985). Modality-repetition and attentional effects on reflex blinking in infants and adults. Infant Behavior & Development, 8, 443–457.CrossRefGoogle Scholar
Balaban, M. T., Losito, B. D. G., Simons, R. F., & Graham, F. K. (1986a). Offline latency and amplitude scoring of the human reflex eyeblink with Fortran IV [computer program abstract]. Psychophysiology, 23, 612.Google Scholar
Balaban, M. T., Losito, B. D. G., Simons, R. F., & Graham, F. K. (1986b). Offline latency and amplitude scoring of the human reflex eyeblink with Fortran IV. Unpublished user's guide.
Berg, K. M. (1973). Elicitation of acoustic startle in the human (Doctoral dissertation, University of Wisconsin, 1973). Dissertation Abstracts International, 34, 5217B–5218B.Google Scholar
Berg, W. K., & Balaban, M. T. (1999). Startle elicitation: Stimulus parameters, recording techniques, and quantification. In Dawson, M. E., Schell, A. M., & Böhmelt, A. M. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 21–50). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bischoff, C., Liscic, R., Meyer, B. U., Machetanz, J., & Conrad, B. (1993). Magnetically elicited blink reflex: An alternative to conventional electrical stimulation. Electromyography and Clinical Neurophysiology, 33, 265–269.Google ScholarPubMed
Blumenthal, T. D. (1988). The startle response to acoustic stimuli near startle threshold: Effects of stimulus rise and fall time, duration, and intensity. Psychophysiology, 25, 607–611.CrossRefGoogle ScholarPubMed
Blumenthal, T. D. (1994). Signal attenuation as a function of integrator time constant and signal duration. Psychophysiology, 31, 201–203.CrossRefGoogle ScholarPubMed
Blumenthal, T. D. (1999). Short lead interval startle modification. In Dawson, M. E., Schell, A. M., & Böhmelt, A. M. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 51–71). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Blumenthal, T. D. & Berg, W. K. (1986). Stimulus rise time, intensity, and bandwidth effects on acoustic startle amplitude and probability. Psychophysiology, 23, 635–641.CrossRefGoogle ScholarPubMed
Blumenthal, T. D., Cuthbert, B. N., Filion, D. L., Hackley, S., Lipp, O. V., & Boxtel, A. V. (2005). Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology, 42, 1–15.CrossRefGoogle ScholarPubMed
Blumenthal, T. D., & Goode, C. T. (1991). The startle eyeblink response to low intensity acoustic stimuli. Psychophysiology, 28, 296–306.CrossRefGoogle ScholarPubMed
Cadenhead, K. S. & Braff, D. L. (1999). Schizophrenia spectrum disorders. In Dawson, M. E., Schell, A. M., & Böhmelt, A. M. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 231–244). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cadenhead, K. S., Swerdlow, N. R., Shafer, K. M., Diaz, M., & Braff, D. L. (2000). Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: Evidence of inhibitory deficits. American Journal of Psychiatry, 157, 1660–1668.CrossRefGoogle ScholarPubMed
Cohen, H. J., Taft, L. T., Mahadeviah, M. S., & Birch, H. G. (1967). Developmental changes in overflow in normal and aberrantly functioning children. Journal of Pediatrics, 71, 39–47.CrossRefGoogle ScholarPubMed
Cook, E. W., Hawk, L. W., Davis, T. L., & Stevenson, V. E. (1991). Affective individual differences and startle reflex modulation. Journal of Abnormal Psychology, 100, 5–13.CrossRefGoogle ScholarPubMed
Cuthbert, B. N., Lang, P. J., Strauss, C., Drobes, D., Patrick, C. J., & Bradley, M. M. (2003). The psychophysiology of anxiety disorder: Fear memory imagery. Psychophysiology, 40, 407–422.CrossRefGoogle ScholarPubMed
Davis, M. (1984). The mammalian startle response. In Eaton, T. C. (Eds.), Neural mechanisms of startle behavior (pp. 287–351). New York: Plenum.CrossRefGoogle Scholar
Davis, M. (1997). The neurophysiological basis of acoustic startle modulation: Research on fear motivation and sensory gating. In Lang, P. J., Simons, R. F., & Balaban, M. T. (Eds.), Attention and orienting: Sensory and motivational processes (pp. 69–96). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Dawson, M. E., Oray, S., Lu, Z.-L., & Schell, A. M. (2004). Prepulse inhibition of event-related brain potentials and startle eyeblink. In Sholov, S. P. (Ed.), Advances in psychology research (Vol. 29, pp. 57–70). Hauppauge, NY: Nova Science Publishers.Google Scholar
Dawson, M. E., Schell, A. M. & Böhmelt, A. H. (1999). Startle modification: Implications for neuroscience, cognitive science, and clinical science. New York: Cambridge University Press.CrossRefGoogle Scholar
Essex, M. J., Goldsmith, H. H., Smider, N. A., Dolski, I., Sutton, S., & Davidson, R. J. (2003). Comparison of video – and EMG-based evaluations of the magnitude of children's emotion-modulated startle response. Behavior Research Methods, Instruments, and Computers, 35, 590–598.CrossRefGoogle ScholarPubMed
Flaten, M. A. (1993). A comparison of electromyographic and photoelectric techniques in the study of classical eyeblink conditioning and startle reflex modification. Journal of Psychophysiology, 7, 230–237.Google Scholar
Gehricke, J., Ornitz, E. M., & Siddarth, P. (2002). Differentiating between reflex and spontaneous blinks using simultaneous recording of the orbicularis oculi electromyogram and the electro-oculogram in startle research. International Journal of Psychophysiology, 44, 261–268.CrossRefGoogle ScholarPubMed
Graham, F. K. (1975). The more or less startling effects of weak prestimulation. Psychophysiology, 12, 238–248.CrossRefGoogle ScholarPubMed
Graham, F. K., Anthony, B. J., & Zeigler, B. L. (1983). The orienting response and developmental processes. In Siddle, D. (Ed.), Orienting and habituation: Perspectives in human research (pp. 371–430). New York: John Wiley and Sons.Google Scholar
Greenwald, M. K., Cook, E. W., & Lang, P. J. (1989). Affective judgment and psychophysiological response: Dimensional covariation in the evaluation of pictorial stimuli. Journal of Psychophysiology, 3, 51–64.Google Scholar
Grillon, C., & Davis, M. (1997). Fear-potentiated startle conditioning in humans: Explicit and contextual cue conditioning following paired versus unpaired training. Psychophysiology, 34, 451–458.CrossRefGoogle ScholarPubMed
Grillon, C.Dierker, L. & Merikangas, K. R. (1997). Startle modulation in children at risk for anxiety disorders and/or alcoholism. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 925–932.CrossRefGoogle ScholarPubMed
Grillon, C.Dierker, L. & Merikangas, K. R. (1998). Fear-potentiated startle in adolescent offspring of parents with anxiety disorders. Biological Psychiatry, 44, 990–997.CrossRefGoogle ScholarPubMed
Grillon, C., Merikangas, K. R., Dierker, L., Snidman, N.Arriaga, R. I., Kagan, J., Donzella, B., Dikel, T., & Nelson, C. (1999). Startle potentiation by threat of aversive stimuli and darkness in adolescents: A multi-site study. International Journal of Psychophysiology, 32, 63–73.CrossRefGoogle ScholarPubMed
Grillon, C., Warner, V., Hille, J., Merikangas, K. R., Bruder, G. E., Tenke, C. E., Nomura, Y., Leite, P., & Weissman, M. M. (2005). Families at high and low risk for depression: A three-generation startle study. Biological Psychiatry, 57, 953–960.CrossRefGoogle ScholarPubMed
Hackley, S. A., & Boelhouwer, A. J. W. (1997). The more or less startling effects of weak prestimulation – revisited: Prepulse modulation of multicomponent blink reflexes. In Lang, P. J., Simons, R. F., & Balaban, M. T. (Eds.), Attention and orienting: Sensory and motivational processes (pp. 205–227). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Hackley, S. A. & Johnson, L. N. (1996). Distinct early and late components of the photic blink reflex: Response characteristics in patients with retrogeniculate lesions. Psychophysiology, 33, 239–251.CrossRefGoogle ScholarPubMed
Haerich, P. (1994). Startle reflex modification: Effects of attention vary with emotional valence. Psychological Science, 5, 407–410.CrossRefGoogle Scholar
Haerich, P. (1998). Using airpuffs to elicit the human blink reflex. Behavior Research Methods, Instruments, & Computers, 30, 661–666.CrossRefGoogle Scholar
Hatanaka, T.Yasuhara, A., & Kobayashi, Y. (1990). Electrically and mechanically elicited blink reflexes in infants and children: Maturation and recovery curves of blink reflexes. Electroencephalography and Clinical Neurophysiology, 76, 39–46.CrossRefGoogle ScholarPubMed
Hawk, L. W. Jr., Pelham, W. E. Jr., & Yartz, A. R. (2002). Attentional modification of short-lead prepulse inhibition and long-lead prepulse facilitation of acoustic startle among preadolescent boys. Psychophysiology, 39, 333–339.CrossRefGoogle ScholarPubMed
Hoffman, H. S., Cohen, M. E., & Anday, E. (1987). Inhibition of the eyeblink reflex in the human infant. Developmental Psychobiology, 20, 277–283.CrossRefGoogle ScholarPubMed
Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59, 107–128.CrossRefGoogle ScholarPubMed
Lazarus, J. C. & Todor, J. I. (1987). Age differences in the magnitude of associated movement. Developmental Medicine & Child Neurology, 29, 726–733.CrossRefGoogle ScholarPubMed
Lazarus, J. C. & Todor, J. I. (1991). The role of attention in the regulation of associated movement in children. Developmental Medicine & Child Neurology, 33, 32–39.CrossRefGoogle ScholarPubMed
Lissek, S., Baas, J. M. P., Pine, D. S., Orne, K., Dvir, S., Nugent, M., Rosenberger, E., Rawson, E., & Grillon, C. (2005). Airpuff startle probes: An efficacious and less aversive alternative to white-noise. Biological Psychology, 68, 283–297.CrossRefGoogle ScholarPubMed
Marsh, R. R., Hoffman, H. S., & Stitt, C. L. (1979). Eyeblink elicitation and measurement in the human infant. Acta Otolaryngolica, 85, 336–341.CrossRefGoogle Scholar
McManis, M. H., Bradley, M. M., Berg, W. K., Cuthbert, B. N., & Lang, P. J. (2001). Emotional reactions in children: Verbal, physiological and behavioral responses to affective pictures. Psychophysiology, 38, 222–231.CrossRefGoogle ScholarPubMed
Ornitz, E. M. (1999). Startle modification in children and developmental effects. In Dawson, M. E., Schell, A. M., & Böhmelt, A. M. (Eds.), Startle modification: Implications for neuroscience, cognitive science, and clinical science (pp. 245–266). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ornitz, E. M., Guthrie, D., Sadeghpur, M. & Sugiyama, T. (1991). Maturation of prestimulation-induced startle modulation in girls. Psychophysiology, 28, 11–20.CrossRefGoogle ScholarPubMed
OSHA (2005). OSHA regulations (standards). Retrieved October 31, 2005, from http://www.osha.gov/index.html.
Richards, J. E. (1998). Development of selective attention in young infants: Enhancement and attenuation of startle reflex by attention. Developmental Science, 1, 45–51.CrossRefGoogle Scholar
Richards, J. E. (2005). Localizing cortical sources of event-related potentials in infants' covert orienting. Developmental Science, 8, 255–278.CrossRefGoogle ScholarPubMed
Schmidt, L. A., & Fox, N. A. (1998). Fear-potentiated startle responses in temperamentally different human infants. Developmental Psychobiology, 32, 113–120.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., & Long, J. M. (1998). Acoustic startle electromyographic (EMG) activity indexed from an electroencephalographic (EOG) electrode placement: A methodological note. International Journal of Neuroscience, 93, 185–188.CrossRefGoogle Scholar
Simons, R. F., & Zelson, M. F. (1985). Engaging visual stimuli and blink modification, Psychophysiology, 22, 44–49.CrossRefGoogle ScholarPubMed
Thierry, G. (2005). The use of event-related potentials in the study of early cognitive development. Infant & Child Development, 14, 85–94.CrossRefGoogle Scholar
Boxtel, A., Boelhouwer, A. J. W., & Bos, A. R. (1998). Optimal EMG signal bandwidth and interelectrode distance for the recording of acoustic, electrocutaneous, and photic blink reflexes. Psychophysiology, 35, 690–697.CrossRefGoogle ScholarPubMed
Vrana, S. R., Spence, E. L., & Lang, P. J. (1988). The startle probe response: A new measure of emotion?Journal of Abnormal Psychology, 97, 487–491.CrossRefGoogle ScholarPubMed
Waters, A. M., Lipp, O. V., & Spence, S. H. (2004). The effects of affective picture stimuli on blink modulation in adults and children. Biological Psychology, 68, 257–281.CrossRefGoogle Scholar
Yamada, A. (1984). Blink reflex elicited by auditory stimulation: Clinical study in newborn infants. Brain & Development, 6, 45–53.CrossRefGoogle ScholarPubMed
Yasuhara, A., Hori, A., & Kobayashi, Y. (1989). Photo-evoked eyelid microvibration in newborn infants and children: Reflex arc and maturational change. Electromyography and Clinical Neurophysiology, 29, 439–444.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×