Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T22:50:01.136Z Has data issue: false hasContentIssue false

9 - Digital controllers for switching power converters

Published online by Cambridge University Press:  05 August 2015

Man Pun Chan
Affiliation:
Marvell Hong Kong Ltd., Kowloon Bay, Hong Kong, China
Philip K. T. Mok
Affiliation:
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
Xicheng Jiang
Affiliation:
Broadcom, Irvine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Erickson, R. W. and Maksimovic, D., Fundamentals of Power Electronics. New York: Kluwer Academic, 2004.Google Scholar
[2] Stratakos, A. J., Sanders, S. R., and Brodersen, R. W., “A low-voltage CMOS DC-DC converter for a portable battery-operated system,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 1994, vol. 1, pp. 619–626.Google Scholar
[3] Ma, D., Ki, W.-H., and Tsui, C.-Y., “An integrated one-cycle control buck converter with adaptive output and dual loops for output error correction,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 140–149, Jan. 2004.CrossRefGoogle Scholar
[4] Lee, C. F. and Mok, P. K. T., “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.CrossRefGoogle Scholar
[5] Siu, M., Mok, P. K. T., Leung, K. N., Lam, Y. H., and Ki, W.-H., “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 4, pp. 294–298, Apr. 2006.Google Scholar
[6] Ma, F.-F., Chen, W.-Z., and Wu, J.-C., “A monolithic current-mode buck converter with advanced control and protection circuits,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1836–1846, Sep. 2007.CrossRefGoogle Scholar
[7] Lin, C.-H., Huang, H.-W., and Chen, K.-H., “Fast transient technique (FTT) in buck current-mode DC-DC converters for low-voltage SoC systems,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2008, pp. 25–28.
[8] Chen, J.-J., Yang, F.-C., and Chen, C.-C., “A new monolithic fast-response buck converter using spike-reduction current-sensing circuits,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1101–1111, Mar. 2008.Google Scholar
[9] Wu, P. Y., Tsui, S. Y. S., and Mok, P. K. T., “Area- and power-efficient monolithic buck converters with pseudo-type III compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446–1455, Aug. 2010.CrossRefGoogle Scholar
[10] Fan, J., Li, X., Park, J., and Huang, A., “A monolithic buck converter using differentially enhanced duty ripple control,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 527–530.
[11] Chan, M. P. and Mok, P. K. T., “Design and implementation of fully integrated digitally controlled current-mode buck converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1980–1991, Aug. 2011.Google Scholar
[12] Chan, M. P. and Mok, P. K. T., “Fully integrated digital controller IC for buck converter with a differential-sensing ADC,” in Proc. IEEE Int. Conf. Electron Devices and Solid-State Circuits, Dec. 2008, pp. 1–4.
[13] Chan, M. P. and Mok, P. K. T., “On-chip digital inductor current sensor for monolithic digitally controlled DC-DC converters,” in Proc. IEEE Int. Symp. Circuits Syst., May 2012, pp. 962 –965.
[14] Xiao, J., Peterchev, A. V., Zhang, J., and Sanders, S. R., “A 4-µA quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2342–2348, Dec. 2004.Google Scholar
[15] Annema, A.-J., Nauta, B., Langevelde, R.van, and Tuinhout, H., “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132–143, Jan. 2005.CrossRefGoogle Scholar
[16] Ki, W.-H., “Signal flow graph in loop gain analysis of DC-DC PWM CCM switching converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 6, pp. 644 –655, Jun. 1998.Google Scholar
[17] Ridley, R. B., “A new continuous-time model for current-mode control with constant frequency, constant on-time, and constant off-time, in CCM and DCM,” in Proc. IEEE Power Electron. Specialists Conf., 1990, pp. 382–389.
[18] Miller, N. R., “A digitally controlled switching regulator,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 1977, pp. 142–147.
[19] Chui, M. Y. K., Ki, W.-H., and Tsui, C.-Y., “A programmable integrated digital controller for switching converters with dual-band switching and complex pole-zero compensation,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 772–780, Mar. 2005.CrossRefGoogle Scholar
[20] Rahman, N., Parayandeh, A., Wang, K., and Prodic, A., “Multimode digital SMPS controller IC for low-power management,” in Proc. IEEE Int. Symp. Circuits Syst., May 2006, pp. 5327–5330.
[21] Patella, B. J., Prodic, A., Zirger, A., and Maksimovic, D., “High-frequency digital PWM controller IC for DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 438–446, Jan. 2003.CrossRefGoogle Scholar
[22] Soenen, E. G., Roth, A., Shi, J., Kinyua, M., Gaither, J., and Ortynska, E., “A robust digital DC-DC converter with rail-to-rail output range in 40nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 198–199.
[23] Ahmad, H. H. and Bakkaloglu, B., “A 300mA 14mV-ripple digitally controlled buck converter using frequency domain ΔΣADC and hybrid PWM generator,” in ISSCC Dig. Tech. Papers, Feb. 2010, pp. 202–203.
[24] Syed, A., Ahmed, E., and Maksimovic, D., “Digital PWM controller with feed-forward compensation,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2004, vol. 1, pp. 60–66.Google Scholar
[25] Foong, H. C., Zheng, Y., Tan, Y. K., and Tan, M. T., “Fast-transient integrated digital DC-DC converter with predictive and feedforward control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 7, pp. 1567–1576, Jul. 2012.CrossRefGoogle Scholar
[26] McCreary, J. L. and Gray, P. R., “All-MOS charge redistribution analog-to-digital conversion techniques. I,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 371–379, Dec. 1975.CrossRefGoogle Scholar
[27] Johns, D. A. and Martin, K., Analog Integrated Circuit Design. New York: John Wiley & Sons, 1997.Google Scholar
[28] Lee, K.-Y., Yeh, C.-A., and Lai, Y.-S., “Design and implementation of fully digital controller for non-isolated-point-of-load converter with high current slew rate,” in Proc. IEEE Industrial Electronics Conf., Nov. 2006, pp. 2605–2610.
[29] Peng, H. and Maksimovic, D., “Digital current-mode controller for DC-DC converters,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2005, vol. 2, pp. 899–905.Google Scholar
[30] Li, J. and Lee, F. C., “Digital current mode control architecture with improved performance for DC-DC converters,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2008, pp. 1087–1092.
[31] Trescases, O., Lukic, Z., Ng, W. T., and Prodic, A., “A low-power mixed-signal current-mode DC-DC converter using a one-bit ΣΔ DAC,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2006, pp. 700–704.
[32] Trescases, O., Rahman, N., Prodic, A., and Ng, W. T., “A 1V buck converter IC with hybrid current-mode control and a charge-pump DAC,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 2008, pp. 1122–1128.
[33] Lam, H. Y. H., Ki, W.-H., and Ma, D., “Loop gain analysis and development of high-speed high-accuracy current sensors for switching converters,” in Proc. IEEE Int. Symp. Circuits Syst., May 2004, vol. 5, pp. V–828–V–831.Google Scholar
[34] Chen, M.-J., Gu, Y.-B., Huang, J.-Y., Shen, W.-C., Wu, T., and Hsu, P.-C., “A compact high-speed Miller-capacitance-based sample-and-hold circuit,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 2, pp. 198–201, Feb. 1998.Google Scholar
[35] Robert, P.-Y., Gosselin, B., Ayoub, A. E., and Sawan, M., “An ultra-low-power successive-approximation-based ADC for implantable sensing devices,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2006, vol. 1, pp. 7–11.Google Scholar
[36] Ramirez-Angulo, J., Gupta, S., Padilla, I., et al., “Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2005, vol. 2, pp. 1151–1154.Google Scholar
[37] Gray, P. R., Hurst, P. J., Lewis, H., and Meyer, R. G., Design of Analog Integrated Circuits. New York: John Wiley & Sons, 2001.Google Scholar
[38] Syed, A., Ahmed, E., Maksimovic, D., and Alarcon, E., “Digital pulse width modulator architectures,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 2004, vol. 6, pp. 4689–4695.Google Scholar
[39] Wang, X., Zhou, X., Park, J., and Huang, A. Q., “Design and implementation of a 9-bit 8MHz DPWM with AMI06 process,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2009, pp. 540–545.
[40] Wang, K., Rahman, N., Lukic, Z., and Prodic, A., “All-digital DPWM/DPFM controller for low-power DC-DC converters,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2006, pp. 719–723.
[41] Trescases, O., Wei, G., and Ng, W. T., “A segmented digital pulse width modulator with self-calibration for low-power SMPS,” in Proc. IEEE Int. Conf. Electron Devices and Solid-State Circuits, Dec. 2005, pp. 367–370.
[42] Chow, H.-C. and Yeh, N. L., “A new phase-locked loop with high speed phase frequency detector,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2005, vol. 2, pp. 1342–1345.Google Scholar
[43] Lukic, Z., Rahman, N., and Prodic, A., “Multibit Σ-Δ PWM digital controller IC for DC-DC converters operating at switching frequencies beyond 10 MHz,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1693–1707, Sep. 2007.CrossRefGoogle Scholar
[44] Leong, P.-K., Yang, C.-H., Leng, C.-W., and Tsai, C.-H., “Design and implementation of sigma-delta DPWM controller for switching converter,” in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 3074–3077.
[45] Kelly, A. and Rinne, K., “High resolution DPWM in a DC-DC converter application using digital sigma-delta techniques,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 2005, pp. 1458–1463.
[46] Martin, T. W. and Ang, S. S., “Digital control for switching converters,” in Proc. IEEE Int. Symp. Industrial Electronics, Jul. 1995, vol. 2, pp. 480–484.Google Scholar
[47] Duan, Y. and Jin, H., “Digital controller design for switchmode power converters,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 1999, vol. 2, pp. 967–973.Google Scholar
[48] Prodic, A., Maksimovic, D., and Erickson, R. W., “Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter,” in Proc. IEEE Ind. Electronics Soc. Conf., Nov. 2001, vol. 2, pp. 893–898.Google Scholar
[49] Prodic, A. and Maksimovic, D., “Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters,” in Proc. IEEE Workshop Computers Power Electronics, Jun. 2002, pp. 18–22.
[50] Guo, L., Hung, J. Y., and Nelms, R. M., “Experimental evaluation of a fuzzy controller using a parallel integrator structure for DC-DC converters,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2005, vol. 2, pp. 707–713.Google Scholar
[51] Bae, H. S., Yang, J. H., Lee, J. H., and Cho, B.-H., “Digital state feedback current control using pole placement technique for the 42V/14V bi-directional DC-DC converter application,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2007, pp. 3–7.
[52] Trescases, O., Prodic, A., and Ng, W. T., “Digitally controlled current-mode DC-DC converter IC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 219–231, Jan. 2011.CrossRefGoogle Scholar
[53] Prodic, A. and Maksimovic, D., “Digital PWM controller and current estimator for a low-power switching converter,” in Proc. IEEE Workshop Computers Power Electronics, Jul. 2000, pp. 123–128.
[54] Musunuri, S. and Chapman, P. L., “Improvement of light-load efficiency using width-switching scheme for CMOS transistors,” IEEE Power Electron. Lett., vol. 3, no. 3, pp. 105–110, Sep. 2005.CrossRefGoogle Scholar
[55] Trescases, O., Wei, G., Prodic, A., and Ng, W. T., “Predictive efficiency optimization for DC-DC converters with highly dynamic digital loads,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1859–1869, Jul. 2008.CrossRefGoogle Scholar
[56] Chattopadhyay, S. and Das, S., “A digital current-mode control technique for DC-DC converters,” IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1718–1726, Nov. 2006.CrossRefGoogle Scholar
[57] Dake, T. and Ozalevli, E., “A precision high-voltage current sensing circuit,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1197–1202, Jun. 2008.CrossRefGoogle Scholar
[58] Du, M. and Lee, H., “An integrated speed- and accuracy-enhanced CMOS current sensor with dynamically biased shunt feedback for current-mode buck regulators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2804–2814, Oct. 2010.CrossRefGoogle Scholar
[59] Leung, C. Y., Mok, P. K. T., and Leung, K. N., “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005.Google Scholar
[60] Yuvarajan, S. and Wang, L., “Performance analysis and signal processing in a current sensing power MOSFET (SENSEFET),” in Proc. IEEE Industry Applications Society Annual Meeting, Oct. 1991, vol. 2, pp. 1445–1450.Google Scholar
[61] Forghani-zadeh, H. P. and Rincon-Mora, G. A., “Current-sensing techniques for DC-DC converters,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., Aug. 2002, vol. 2, pp. II–577–II–580.Google Scholar
[62]Analog Devices. AD7478: 1MSPS, 8-Bit ADC in 6 lead SOT-23 datasheet [online]. Available at: http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7478/products/product.html.
[63]Linear Technology. LTC1196: 8-Bit, SO-8, 1Msps ADCs with auto-shutdown options datasheet [online]. Available at: http://www.linear.com/product/LTC1196.
[64]Maxim Integrated Products. MAX11120: 1Msps, low-power, serial 8-bit, 4-channel ADCs datasheet [online]. Available at: http://datasheets.maxim-ic.com/en/ds/MAX11120-MAX11128.pdf.
[65] Trescases, O., Wei, G., and Ng, W. T., “A low-power DC-DC converter with digital spread spectrum for reduced EMI,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 2006, pp. 1–7.
[66]Samsung. Samsung Exynos 4 Quad user's manual [online]. Available at: http://www.samsung.com/global/business/semiconductor/file/product/Exynos_4_Quad_User_Manaul_Public_REV100-0.pdf.
[67]Texas Instruments. Multicore DSP+ARM KeyStone II system-on-chip data manual [online]. Available at: http://www.ti.com/product/66ak2e05#doctype6.
[68] Redl, R. and Sun, J., “Ripple-based control of switching regulators: an overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669–2680, Dec. 2009.CrossRefGoogle Scholar
[69] Su, F. and Ki, W.-H., “Digitally assisted quasi-V2 hysteretic buck converter with fixed frequency and without using large-ESR capacitor,” in ISSCC Dig. Tech. Papers, Feb. 2009, pp. 446–447, 447a.
[70] Dallago, E., Passoni, M., and Sassone, G., “Lossless current sensing in low-voltage high-current DC/DC modular supplies,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1249–1252, Dec. 2000.Google Scholar
[71] Lei, H. and Shiguo, L., “Design considerations of time constant mismatch problem for inductor DCR current sensing method,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2006, pp. 1368–1374.
[72] Cheng, K.-Y., Yu, F., Lee, F. C., and Mattavelli, P., “Digital enhanced V2-type constant on-time control using inductor current ramp estimation for a buck converter with low-ESR capacitors,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1241–1252, Mar. 2013.CrossRefGoogle Scholar
[73] Song, J., Yoon, G., and Kim, C., “An efficient adaptive digital DC-DC converter with dual loop controls for fast dynamic voltage scaling,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2006, pp. 253–256.
[74] Shi, J., Hsu, Y.-C., Soenen, E., Roth, A., and Gaither, J., “A wide-range DC/DC converter with 2nd order digital compensation and direct battery connection in 40nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2011, pp. 1–4.
[75] Chan, M. P. and Mok, P. K. T., “On-chip digital inductor current sensor for monolithic digitally controlled DC-DC converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 5, pp. 1232–1240, May 2013.CrossRefGoogle Scholar
[76] Oppenheim, A. V., Discrete-Time Signal Processing, . Upper Saddle River, NJ: Prentice Hall, 1999.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×