Published online by Cambridge University Press: 05 June 2012
LEARNING OBJECTIVES FOR THIS CHAPTER
7–1 To recognize the A-, T- and D-type elements of electrical systems.
7–2 To develop the mathematical equations that model the dynamic behavior of RLC electrical circuits.
7–3 Develop the equations that describe the dynamic behavior of RLC circuits with time-varying capacitors and inductors.
7–4 Analyze simple operational-amplifier circuits.
INTRODUCTION
The A-type, T-type, and D-type elements used in modeling electrical systems, which correspond to the mass, spring, and damper elements discussed in Chap. 2, are the capacitor, inductor, and resistor elements.
A capacitor, the electrical A-type element, stores energy in the electric field induced in an insulating medium between a closely spaced pair of conducting elements, usually plates of metal, when opposite charges are applied to the plates. Capacitance is a measure of the ability of a capacitor to accept charge and hence its ability to store energy. It occurs naturally between the conductors of a coaxial cable, between closely spaced parallel cables, and in closely packed coils of wire. In these cases the capacitance is distributed, along with resistance and inductance, along the line, and the analysis of such situations is beyond the scope of this text. However, in some cases the resistance and inductance are negligible, making it possible to use a lumped-capacitance model. More frequently, specially designed off-the-shelf capacitors are used that have negligible inductance and series resistance.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.