Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:22:08.464Z Has data issue: false hasContentIssue false

31 - Wild Boar Management in Europe: Knowledge and Practice

from Part III - Conservation and Management

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acevedo, P., Escudero, M. A., Muñoz, R. & Gortázar, C. (2006). Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriologica 51: 327336.Google Scholar
Alexandrov, T., Kamenov, P., Stefanov, D. & Depner, K. (2011). Trapping as an alternative method of eradicating classical swine fever in a wild boar population in Bulgaria. Revue scientifique et technique (International Office of Epizootics) 30: 911916.Google Scholar
Allendorf, F. W., England, Ph. R., Luikart, G., Ritchie, P. A. & Ryman, N. (2008). Genetic effects of harvest on wild animal populations. Trends in Ecology and Evolution 23(6): 327337.CrossRefGoogle ScholarPubMed
Andersen, R. & Holthe, V. (2010). Ungulates and their management in Denmark. In Apollonio, M., Andersen, R. & Putman, R. (eds.), European ungulates and their management in the 21st century. Cambridge: Cambridge University Press, pp. 7185.Google Scholar
Andersson, A., Aanismaa, R., Huusko, J. & Jensen, P. (2011). Behaviour of European wild boar (Sus scrofa) in connection with farrowing in an enclosure. Mammalian Biology 76(3): 332338.Google Scholar
Anonymous, . (2004). Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin.Google Scholar
Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and Urban Planning 67: 926.Google Scholar
Ballesteros, C., Carrasco-García, R., Vicente, J., et al. (2009). Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildlife Research 36: 203221.CrossRefGoogle Scholar
Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C., & Vicente, J. (2013). Trap-effectiveness and response to tiletamine–zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Veterinary Research 9: 107.Google Scholar
Barasona, J. A., Latham, M. C., Acevedo, P., et al. (2014). Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Veterinary Research 45(1): 122.CrossRefGoogle ScholarPubMed
Beringer, J., Hansen, L. P., Demand, J. A. & Sartwell, J. (2002). Efficacy of translocation to control urban deer in Missouri: costs, efficiency, and outcome. Wildlife Society Bulletin 30: 767774.Google Scholar
Bieber, C. & Ruf, T. (2005). Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. Journal of Applied Ecology 42: 12031213.Google Scholar
Bischof, R., Mysterud, A. & Swenson, J. E. (2008). Should hunting mortality mimic the patterns of natural mortality? Biology Letters 4: 307310.Google Scholar
Boadella, M., Vicente, J., Ruiz-Fons, F., de la Fuente, J., & Gortázar, C. (2012). Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Preventive Veterinary Medicine 107(3): 214221.CrossRefGoogle ScholarPubMed
Borowik, T., Cornulier, T. & Jędrzejewska, B. (2013). Environmental factors shaping ungulate abundance in Poland. Acta Theriologica 58: 403413.Google Scholar
Börner, K., Stillfried, M., Frantz, A. C., et al. (2013). Biological background data are needed in assessment of disease spread in the wild boar. In 31st IUGB Congress, International Union of Game Biologists, Brussels, Belgium, p. 274.Google Scholar
Cahill, S., Llimona, F., Cabañeros, L. & Colomardo, F. (2012). Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Animal Biodiversity and Conservation 35(2): 221233.Google Scholar
Camps, F., Rosell, C., Boronat, C., et al. (2012). Estudi d'accidentalitat provocada per animals en llibertat a la xarxa de carreteres de la Generalitat de Catalunya. Departament de Territori i Sostenibilitat. Direcció General de carreteres. Unpublished report, 212 pp.Google Scholar
Cellina, S. (2008). Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa in Luxembourg. PhD thesis. University of Sussex.Google Scholar
Colino, V., Bosch, J., Reoyo, M. J. & Peris, S. (2012). Influence of new irrigated croplands on wild boar (Sus scrofa) road kills in NW Spain. Animal Biodiversity and Conservation 35(2): 247252.Google Scholar
Conover, M. (2002). Resolving human–wildlife conflicts: the science of wildlife damage management. Boca Raton, FL: Lewis.Google Scholar
Cozzi, M., Romano, S., Viccaro, M., Prete, C. & Persiani, G. (2015). Wildlife agriculture interactions, spatial analysis and trade-off between environmental sustainability and risk of economic damage. In Vastola, A. (ed.), The sustainability of agro-food and natural resource systems in the Mediterranean basin. Springer Open, pp. 209224.Google Scholar
Cruz, F., Josh, J. C., Campbell, K. & Carron, V. (2005). Conservation action in the Galàpagos: feral pig (Sus scrofa) eradication from Santiago Island. Biological Conservation 121: 473478.CrossRefGoogle Scholar
Cutini, A., Chianucci, F., Chirichella, R. et al. (2013). Mast seeding in deciduous forests of the northern Apennines (Italy) and its influence on wild boar population dynamics. Annals of Forest Science 70(5): 493502.Google Scholar
Dezorzova-Tomanova, K., Smola, J., Trcka, I., Lamka, J. & Pavlik, I. (2006). Detection of Lawsonia intracellularis in wild boar and fallow deer bred in one game enclosure in the Czech Republic. Journal of Veterinary Medicine, Series B 53(1): 4244.CrossRefGoogle ScholarPubMed
Díez-Delgado, I., Boadella, M., Martín-Hernando, M., et al. (2014). Complex links between natural tuberculosis and porcine circovirus type 2 infection in wild boar. BioMed Research International 2014: 765715.Google Scholar
Durio, P., Fogliato, D., Perrone, A. & Tessarin, N. (1995). The autumn diet of the wild boar (Sus scrofa) in an Alpine valley. Preliminary results. Ibex Journal of Mountain Ecology 3: 180183.Google Scholar
EFSA (2014). Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA Journal 12(3): 3616, 23 pp.Google Scholar
Engeman, R. M., Constantin, B. U., Shwiff, S. A., et al. (2007). Adaptive and economic management methods for feral hog control in Florida. Human–Wildlife Conflicts 1: 178185.Google Scholar
Erkinaro, E., Heikura, K., Lindgren, E., Pulliainen, E. & Sulkava, S. (1982). Occurrence and spread of the wild boar (Sus scrofa) in eastern Fennoscandia. Memoranda Societatis pro Fauna Flora Fennica 58: 3947.Google Scholar
Fernández-de-Mera, I., Gortázar, C., Vicente, J., Höfle, U. & Fierro, Y. (2003). Wild boar helminths: risks in animal translocations. Veterinary Parasitology 115: 335341.Google Scholar
Fernández-Llario, P. & Mateos-Quesada, P. (2003). Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula. Folia Zoologica 52(2): 143148.Google Scholar
Ferretti, F., Sforzi, A., Coats, J. & Massei, G. (2014). The BOSTM as a species-specific method to deliver baits to wild boar in a Mediterranean area. European Journal of Wildlife Research 60: 555558.CrossRefGoogle Scholar
Focardi, F., Capizzi, D. & Monetti, D. (2000). Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. Journal of Zoology 250(3): 329334.CrossRefGoogle Scholar
Fournier-Chambrillon, C., Maillard, D. & Fournier, P. (1995). Diet of the wild boar (Sus scrofa L.) inhabiting the Montpellier garrigue. Ibex Journal of Mountain Ecology 3: 174179.Google Scholar
Gaillard, J-M., Delorme, D., Van Laere, G., Duncan, P. & Lebreton, J. D. (1997). Early survival in roe deer: causes and consequences of cohort variation in two contrasted populations. Oecologia 112: 502513.CrossRefGoogle ScholarPubMed
Gamelon, M., Besnard, A., Gaillard, J.M., et al. (2011). High hunting pressure selects for earlier birth date: wild boar as a case study. Evolution 65: 31003112.Google Scholar
Genov, P. W., Massei, G. & Kostova, W. (1994). Die Nutzung des Wildschweins (Sus scrofa) in Europa in Theorie und Praxis. Z Jagdwiss 40: 263267.Google Scholar
Goedbloed, D. J., van Hooft, P., Lutz, W., et al. (2015). Increased Mycoplasma hyopneumoniae disease prevalence in domestic hybrids among free-living wild boar. EcoHealth 12: 571579.Google Scholar
Gómez, J. M., García, D. & Zamora, R. (2003). Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management 180: 125134.CrossRefGoogle Scholar
Gortázar, Ch., Acevedo, P., Ruiz-Fons, F. & Vicente, J. (2006). Disease risks and overabundance of game species. European Journal of Wildlife Research 52 (2): 8187.CrossRefGoogle Scholar
Gortázar, C., Torres, M. J., Vicente, J., et al. (2008). Bovine tuberculosis in Doñana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS ONE 3(7): e2776.CrossRefGoogle ScholarPubMed
Gren, I. M., Häggmark-Svensson, T., Andersson, H., Jansson, G. & Jägerbrand, A. (2016). Using traffic data to estimate wildlife populations. Journal of Bioeconomics 18(1): 1731.CrossRefGoogle Scholar
Groot Bruinderink, G. W. T. A. & Hazebroek, E. (1996a). Ungulate traffic collisions in Europe. Conservation Biology 10(4): 10591067.CrossRefGoogle Scholar
Groot Bruinderink, G. W. T. A. & Hazebroek, E. (1996b). Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. Forest Ecology and Management 88: 7180.CrossRefGoogle Scholar
Groot Bruinderink, G.W.T.A., Hazebroek, E. & van der Voot, H. (1994). Diet and condition of wild boar, Sus scrofa scrofa, without supplementary feeding. Journal of Zoology 233: 631648.Google Scholar
Haaverstada, O., Hjeljorda, O. & Wamb, H. K. (2014). Wild boar rooting in a northern coniferous forest – minor silviculture impact. Scandinavian Journal of Forest Research 29(1): 9095.Google Scholar
Hars, J., Rossi, S., Faure, E., et al. (2015). Risques sanitaires liés à l'importation de gibier sauvage d’élevage et de repeuplement. Santé animale-alimentation 66: 4850.Google Scholar
Herrera, J. (1995). Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.). Forestry Ecology and Management 76: 197201.Google Scholar
Hobbs, N. T. (1996). Modification of ecosystems by ungulates. Journal of Wildlife Management 60: 695713.Google Scholar
Huijser, M. P. & McGowen, P. T. (2010). Reducing wildlife–vehicle collisions. In Beckman, J. P., Clevenger, A. P., Huijser, M. & Hilty, J. A. (eds.), Safe passages. Highways, wildlife and habitat connectivity. Washington, DC: Island Press, pp. 5174.Google Scholar
Ignatavicius, G., Oskinis, V. & Vildaite, V. (2011). Investigation of the impact of wildlife–vehicle collision prevention installations on highway Vilnius-Panevėžys (Lithuania) traffic safety. Environmental Engineering (The 8th International Conference, 19–20 May, 2011, Vilnius, Lithuania), pp. 10801088.Google Scholar
Iuell, B., Bekker, G. J., Cuperus, R., et al. (2003). Wildlife and traffic: a European handbook for identifying conflicts and designing solutions. Cost Action 341. Habitat fragmentation due to transportation infrastructure. Zeist: KNNV Publishers.Google Scholar
Jánoska, F. (2010). Wild boar in Hungarian game hunting parks. In Chapman, N. G. & Hecker, K. (eds.), Proceedings of the International Symposium ‘Enclosures: a Dead-End?’ Sopron, Hungary, 2008, pp. 1427.Google Scholar
Jánoska, F. & Varju, J. (2009). Environmental studies in wild boar enclosures. In Náhlik, A. & Tari, T. (eds.), Proceedings of the 7th International Symposium on Wild Boar (Sus scrofa) and on Sub-order Suiformes. Sopron, Hungary, pp. 5253.Google Scholar
Jansen, A., Luge, E., Guerra, B., et al. (2007). Leptospirosis in urban wild boar, Berlin, Germany. Emerging Infectious Diseases 13(5): 739742.Google Scholar
Jędrzejewska, B., Jędrzejewski, W., Bunevich, A. N., Milkowski, L. & Krasinski, A. (1997). Factors shaping population densities and increased rates of ungulates in Bialowieza Primeval Forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriologica 42: 399451.Google Scholar
Jędrzejewski, W., Jędrzejewska, B., Okarma, H. & Ruprecht, A. L. (1992). Wolf predation and snow cover as mortality factors in the ungulate community of the Białowieża National Park, Poland. Oecologia 90: 2736.Google Scholar
Jędrzejewski, W., Jędrzejewska, B., Okarma, H., et al. (2000). Prey selection and predation by wolves in Białowieża Primeval Forest, Poland. Journal of Mammalogy 81: 197212.Google Scholar
Kanzaki, N., Perzanowski, K. & Nowosad, M. (1998). Factors affecting wild boar (Sus scrofa) population dynamics in Bieszczady, Poland. Gibier Faune Sauvage 15(3): 11711178.Google Scholar
Keuling, O., Baubet, E., Duscher, A., et al. (2013). Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research 59(6): 805814.CrossRefGoogle Scholar
Killian, G., Fagerstone, K. A., Kreeger, T., Miller, L. A. & Rhyan, J. (2007). Management strategies for addressing wildlife disease transmission: the case for fertility control. In Proceedings of the Wildlife Damage Management Conference, 9–12 April. Corpus Christi, Texas, USA, pp. 265271.Google Scholar
Kotulski, Y. & König, A. (2008). Wild boar in the Berlin city – a social empirical and statistical survey. Natura Croatica 17(4): 233246.Google Scholar
Kukushkin, S., Baborenko, E., Baybikov, T., Mikhalishin, V. & Domskiy, I. (2009). Seroprevalence of antibodies to main porcine infection pathogens in Wild Boar in some regions of Russia. Acta Silvatica Lignaria Hungarica 5: 147152.Google Scholar
Kullberg, Y. & Bergström, R. (2001). Winter browsing by large herbivores on deciduous seedlings in southern Sweden. Scandinavian Journal of Forest Research 16: 371378.Google Scholar
Lagos, L., Picos, J. & Valero, E., (2012). Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. European Journal of Wildlife Research 58: 661668.Google Scholar
Lancia, R. A. (1994). Estimating the number of animals in wildlife populations. In Research and management techniques for wildlife and habitats. Bethesda, MD: The Wildlife Society.Google Scholar
Langbein, J., Putman, R. & Pokorny, B. (2011). Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. In Putman, R., Apollonia, M. & Andersen, R. (eds.), Ungulate management in Europe. Cambridge: Cambridge University Press, pp. 215259.Google Scholar
Larsen, D. R. & Johnson, P. S. (1998). Linking the ecology of natural oak regeneration to silviculture. Forest Ecology and Management 106(1,2): 17.Google Scholar
Lebocký, T. & Petrás, R. (2015). The influence of wild boar on the growth of forest trees and stands: a case study of a wild boar game preserve. Acta Silvatica and Lignaria Hungarica 11(1): 6575.Google Scholar
Licoppe, A., Prévot, C., Cahill, S., et al. (2014). Enquête internationale sur le sanglier en zone péri-urbaine. Forêt Wallonne 131: 316.Google Scholar
Lüpke, B.v. (1998). Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. Forest Ecology and Management 106: 1926.Google Scholar
Malo, J., Suárez, F. & Diez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? Journal of Applied Ecology 41: 701710.CrossRefGoogle Scholar
Massei, G. & Cowan, D. P. (2014). Fertility control to mitigate human–wildlife conflicts: a review. Wildlife Research 41: 121.Google Scholar
Massei, G., Genov, P. V. & Staines, B. V. (1996). Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriologica 41: 307320.Google Scholar
Massei, G., Cowan, D. P., Coats, J., et al. (2008). Effect of the GnRH vaccine GonaConTM on the fertility, physiology and behaviour of wild boar. Wildlife Research 35: 540547.Google Scholar
Massei, G., Quy, R., Gurney, J. & Cowan, D. P. (2010). Can translocations be used to manage human–wildlife conflicts? Wildlife Research 37: 428439.CrossRefGoogle Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral pigs. Human–Wildlife Interactions 5: 7999.Google Scholar
Massei, G., Cowan, D. P., Coats, J., et al. (2012). Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour. Wildlife Research 39: 378385.Google Scholar
Massei, G., Cowan, D. P. & Eckery, D. C. (2014). Novel management methods: immunocontraception and other fertility control tools. In Putman, R. & Apollonio, M. (eds.), Behaviour and management of European ungulates. Dunbeath, Caithness, Scotland: Whittles Publishing, pp. 209235.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Mayle, B. A., Peace, A. J. & Gill, R. M. A. (1999). How many deer? A field guide to estimating deer population size. Forestry Commission Field Book 18. Edinburgh: Forestry Commission.Google Scholar
McCann, B. E. & Garcelon, D. K. (2008). Eradication of feral pigs from Pinnacles National Monument. The Journal of Wildlife Management 72: 12871295.Google Scholar
Melis, C., Szafrañska, P. A., Jędrzejewska, B. & Barton, K. (2006). Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. Journal of Biogeography 33(5): 803811.Google Scholar
Meng, X. J., Lindsay, D. S., & Sriranganathan, N. (2009). Wild boar as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1530): 26972707.Google Scholar
Miller, L. A., Gionfriddo, J., Fagerstone, K. A., Rhyan, J. & Killian, G. (2008). The single-shot GnRH imunocontraceptive vaccine (GonaConTM) in white-tailed deer: comparison of several GnRH preparations. American Journal of Reproductive Immunology 60: 214223.Google Scholar
Milner, J. M., Nilsen, E. B. & Andreassen, H. P. (2007). Demographic side effects of selective hunting in ungulates and carnivores. Conservation Biology 21: 3647.Google Scholar
Náhlik, A. & Sándor, Gy. (2003). Birth rate and offspring survival in a free-ranging wild boar Sus scrofa population. Wildlife Biology 9(Suppl. 1): 3742.Google Scholar
Navarro-Gonzalez, N., Casas-Díaz, E., Porrero, C. M., et al. (2013). Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boar in Barcelona, Spain. Veterinary Microbiology 167: 686689.Google Scholar
Nores, C., Llaneza, L. & Álvarez, A. (2008). Wild boar Sus scrofa mortality by hunting and wolf Canis lupus predation: an example in northern Spain. Wildlife Biology 14: 4451.Google Scholar
O'Hara, K. L. (2001). The silviculture of transformation – a commentary. Forest Ecology and Management 151: 8186.Google Scholar
Okarma, H., Jędrzejewska, B., Jędrzejewski, W., Krasin´ski, Z. A. & Mitkowski, L. (1995). The roles of predation, snow cover, acorn crop, and man-related factors on ungulate mortality in Białowieża Primeval Forest, Poland. Acta Theriologica 40: 197217.Google Scholar
Ostfeld, R. S. & Keesing, F. (2000). Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Tree 15: 232237.Google Scholar
Piorr, A., Ravetz, J. & Tosics, I. (2011). Peri-urbanisation in Europe: towards a European policy to sustain urban–rural futures. Frederiksberg: Academic Books Life Sciences.Google Scholar
Podgórski, T., Baś, G., Jędrzejewska, B., et al. (2013). Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. Journal of Mammalogy 94: 109119.Google Scholar
Powell, D. M. (2004). Pigs (Suidae). In Kleiman, D. G., Geist, V. & McDade, M. (eds.), Grzimek's animal life encyclopedia. 2nd ed., Volume 15, Mammals IV. Farmington Hills, MI: Gale, pp. 275290.Google Scholar
Putman, R. J., Apollonio, M. & Andresen, R. (2011). Ungulate management in Europe: problems and practices. Cambridge: Cambridge University Press.Google Scholar
Putman, R. J., Langbein, J., Watson, P., Green, P. & Cahill, S. (2014). The management of urban populations of ungulates. In Putman, R. & Apollonio, M. (Eds.), Behaviour and management of European ungulates. Dunbeath, Caithness, Scotland: Whittles Publishing, pp. 148177.Google Scholar
Reidy, M. M., Campbell, T. A. & Hewitt, D. G. (2008). Evaluation of electric fencing to inhibit feral pig movements. The Journal of Wildlife Management 72: 10121018.Google Scholar
Rosell, C., Alvarez, G., Cahill, S., et al. (2003). COST 341. La fragmentación del hábitat en relación con las infraestructuras de transporte en España. OA Parques Nacionales. Ministerio de Medio Ambiente. 349 pp.Google Scholar
Rosell, C., Fernández-Bou, M., Camps, F., et al. (2013). Animal–vehicle collisions: a new cooperative strategy is needed to reduce the conflict. Proceedings ICOET 2013 International Conference on Ecology and Transportation. Scottsdale, Arizona.Google Scholar
Rossi, S., Fromont, E., Pontier, D., et al. (2005). Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiology and Infection 133: 559568.Google Scholar
Rossi, S., Staubach, C., Blome, S., et al. (2015). Controlling of CSFV in European wild boar using oral vaccination: a review. Frontiers in Microbiology 6: 1141.Google Scholar
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? NTNU Vitenskapsmuseet. Rapport Zoologisk Serie 2008 1: 123.Google Scholar
Ruiz-Fons, F., Segalés, J., & Gortázar, C. (2008). A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. The Veterinary Journal 176(2): 158169.Google Scholar
Sáenz-de-Santa-María, A. & Tellería, J. L. (2015). Wildlife–vehicle collisions in Spain. European Journal of Wildlife Research 61: 399406.Google Scholar
Saunders, G., Kay, B. & Nicol, H. (1993). Factors affecting bait uptake and trapping success for feral pigs (Sus scrofa) in Kosciusko National Park. Wildlife Research 20: 653665.Google Scholar
Schroeder, R. L. & Vangilder, L. D. (1997). Tests of wildlife habitat models to evaluate oak-mast production. Wildlife Society Bulletin 25(3): 639646.Google Scholar
Schütz, J.-P. (1999). Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72(4): 359366.Google Scholar
Segura, A., Acevedo, P., Rodríguez, O., Naves, J. & Obeso, J. R. (2014). Biotic and abiotic factors modulating wild boar relative abundance in Atlantic Spain. European Journal of Wildlife Research 60: 469476.Google Scholar
Seiler, A. (2004). Trends and spatial patterns in ungulate–vehicle collisions in Sweden. Wildlife Biology 10: 301310.CrossRefGoogle Scholar
Servanty, S., Gaillard, J-M., Toïgo, C., Brandt, S. & Baubet, E. (2009). Pulsed resources and climate induced variation in the reproductive traits of wild boar under high hunting pressure. Journal of Animal Ecology 78(6): 12781290.Google Scholar
Shaw, M. W. (1968). Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales: II. acorn losses and germination under field conditions. Journal of Ecology 56(3): 647660.Google Scholar
Spitz, F. (1992). General model of the spatial and social organization of the Wild Boar (Sus scrofa L). In Spitz, F., Janeau, G., Gonzales, G. & Aulagnier, S. (eds.), Proceedings of the International Symposium ‘Ongulés/Ungulates 91’, Toulouse, France, pp. 385389.Google Scholar
Spitz, F. (1999). Sus scrofa Linnaeus, 1758. In Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., et al. (eds.), The atlas of European mammals. London: T and AD Poyser, pp. 380381.Google Scholar
Standovár, T. & Kenderes, K. (2003). A review on natural stand dynamics in beechwoods of east central Europe. Applied Ecology and Environmental Research 1(1–2): 1946.Google Scholar
Stubbe, C., Mehlitz, S., Peukert, R., et al. (1989). Lebensraumnutzung und Populationsumsatz des Schwarzwildes in der DDR – Ergebnisse der Wildmarkierung. Beitr. zur Jagd- und Wildforschung 16: 212231.Google Scholar
Sweitzer, R. A. & Van Vuren, D.H. (2002). Rooting and foraging effects of wild pigs on tree regeneration and acorn survival in California's oak woodland ecosystems. USDA Forest Service General Technical Report 219231.Google Scholar
Syrjala, P., Oksanen, A., Halli, O., Peltoniemi, O. & Heinonen, M. (2010). Metastrongylus spp. infection in farmed wild boar (Sus scrofa) in Finland. Acta Veterinaria Scandinavica (52): 12.Google Scholar
Thurfjell, H., Spong, G., Olsson, M. & Ericsson, G. (2015). Avoidance of high traffic levels results in lower risk of wild boar-vehicle accidents. Landscape and Urban Planning 133: 98104.Google Scholar
Toïgo, C., Servanty, S., Gaillard, J-M., Brandt, S. & Baubet, E. (2010). Disentangling natural from hunting mortality in an intensively hunted wild boar population. The Journal of Wildlife Management 72(7): 15321539.Google Scholar
Torrellas, M. (2014). Ungulate–vehicle collisions in Catalonia: Identifying the main landscape and road-related variables describing the most hazardous road locations. Master's degree report. Unpublished. 23 pp.Google Scholar
Truvé, J. (2004). Pigs in space: movement, dispersal and geographic expansion of wild boar (Sus scrofa) in Sweden. Dissertation, University of Göteborg.Google Scholar
Vetter, S. G., Ruf, T., Bieber, C. & Arnold, W. (2015). What is a mild winter? Regional differences in within-species responses to climate change. PLoS ONE 10(7): e0132178.Google Scholar
Vicente, J., Seglés, J., Höfle, U., et al. (2004). Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Veterinary Research 35: 243253.Google Scholar
Vicente, J., Höfle, U., Garrido, J. M., et al. (2007). Risk factors associated with the prevalance of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Veterinary Research 38: 451464.Google Scholar
Vicente, J., Barasona, J. A., Acevedo, P., et al. (2013). Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transboundary and Emerging Diseases 60(Suppl. 1): 92103.Google Scholar
Vilaça, S.T., Biosa, D., Zachos, F., et al. (2014). Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. Journal of Biogeography 41: 987998.Google Scholar
Watt, A. S. (1919). On the causes of failure of natural regeneration in British oakwoods. Journal of Ecology 7(3/4): 173203.CrossRefGoogle Scholar
Welander, J. (1995). Are wild boar a future threat to the Swedish flora? Ibex Journal of Mountain Ecology 3: 165167.Google Scholar
West, B. C., Cooper, A. L. & Armstrong, J. B. (2009). Managing wild pigs. A technical guide. Human–Wildlife Interaction Monograph. Berryman Institute (1): 150.Google Scholar
Williams, B. L., Holtfreter, R. W., Ditchkoff, S. S. & Grand, J. B. (2011). Trap style influences wild pig behavior and trapping success. The Journal of Wildlife Management 75: 432436.CrossRefGoogle Scholar
Wilson, C. J. (2014). The establishment and distribution of feral wild boar (Sus scrofa L.) in England. Wildlife Biology in Practice 10: 16.Google Scholar
Zuberogoitia, I., del Real, J., Torres, J. J., et al. (2014). Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates. PLoS ONE 9(9): e107713.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×