Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:12:06.103Z Has data issue: false hasContentIssue false

7 - Electrochromism within metal coordination complexes

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Redox coloration and the underlying electronic transitions

Metal coordination complexes show promise as electrochromic materials because of their intense coloration and redox reactivity. Chromophore properties arise from low-energy metal-to-ligand charge-transfer (MLCT), intervalence charge-transfer (IVCT), intra-ligand excitation, and related visible-region electronic transitions. Because these transitions involve valence electrons, chromophoric characteristics are altered or eliminated upon oxidation or reduction of the complex, as touched on in Chapter 1. A familiar example used in titrations is the redox indicator ferroin, [FeII(phen)3]2 + (phen = 1,10-phenanthroline), which has been employed in a solid-state ECD, the deep red colour of which is transformed to pale blue on oxidation to the iron(III) form. Often more markedly than other chemical groups, a coloured metal coordination complex susceptible to a redox change will in general undergo an accompanying colour change, and will therefore be electrochromic to some extent. The redox change – electron loss or gain – can be assigned to either the central coordinating cation or the bound ligand(s); often it is clear which, but not always. If it is the central cation that undergoes redox change, then its initial and final oxidation states are shown in superscript roman numerals, while the less clear convention for ligands is usually to indicate the extra charge lost or gained by a superscripted + or −. As mentioned in Chapter 1, whilst the term ‘coloured’ generally implies absorption in the visible region, metal coordination complexes that switch between a colourless state and a state with strong absorption in the near infra red (NIR) region are now being intensively studied.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mortimer, R. J. and Rowley, N. M. Metal complexes as dyes for optical data storage and electrochromic materials. In Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, McCleverty, J. A. and Meyer, T. J. (eds.), Oxford, Elsevier, 2003, vol. 9, pp. 581–619.Google Scholar
Zhang, S. S., Qui, X. P., Chou, W. H., Liu, Q. G., Lang, L. L. and Xing, B. Q.Ferroin-based solid-state electrochromic display. Solid State Ionics, 52, 1992, 287–9.CrossRefGoogle Scholar
Ward, M. D. and McCleverty, J. A.Non-innocent behaviour in mononuclear and polynuclear complexes: consequences for redox and electronic spectroscopic properties. J. Chem. Soc., Dalton Trans., 2002, 275–88.CrossRefGoogle Scholar
Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. and Zelewsky, A.Ru(II)-polypyridine complexes – photophysics, photochemistry, electrochemistry and chemi-luminescence. Coord. Chem. Rev., 84, 1988, 85–277.CrossRefGoogle Scholar
Pichot, F., Beck, J. H. and Elliott, C. M.A series of multicolour electrochromic ruthenium(II) trisbipyridine complexes: synthesis and electrochemistry. J. Phys. Chem. A, 103, 1999, 6263–7.CrossRefGoogle Scholar
Elliott, C. M. and Redepenning, J. G.Stability and response studies of multicolour electrochromic polymer modified electrodes prepared from tris(5,5′-dicarboxyester-2,2′-bipyridine)ruthenium(II). J. Electroanal. Chem., 197, 1986, 219–32.CrossRefGoogle Scholar
Elliott, C. M.Electrochemistry and near infrared spectroscopy of tris(4,4′-dicarboxyethyl-2,2′-bipyridine)ruthenium(II). J. Chem. Soc., Chem. Commun., 1980, 261–2.CrossRefGoogle Scholar
Elliott, C. M. and Hershenhart, E. J.Electrochemical and spectral investigations of ring-substituted bipyridine complexes of ruthenium. J. Am. Chem. Soc., 104, 1982, 7519–26.CrossRefGoogle Scholar
Mortimer, R. J. Dynamic processes in polymer modified electrodes. In Research in Chemical Kinetics, Compton, R. G. and Hancock, G. (eds.), vol. 2, Amsterdam, Elsevier, 1994, pp. 261–311.Google Scholar
Ellis, C. D., Margerum, L. D., Murray, R. W. and Meyer, T. J.Oxidative electropolymerization of polypyridyl complexes of ruthenium. Inorg. Chem., 22, 1983, 1283–91.CrossRefGoogle Scholar
Horwitz, C. P. and Zuo, Q.Oxidative electropolymerization of iron and ruthenium complexes containing aniline-substituted 2,2′-bipyridine ligands. Inorg. Chem., 31, 1992, 1607–13.CrossRefGoogle Scholar
Hanabusa, K., Nakamura, A., Koyama, T. and Shirai, H.Electropolymerization and characterization of terpyridinyl iron(II) and ruthenium(II) complexes. Polym. Int., 35, 1994, 231–8.CrossRefGoogle Scholar
Zhang, H.-T., Subramanian, P., Fussa-Rydal, O., Bebel, J. C. and Hupp, J. T.Electrochromic devices based on thin metallopolymeric films. Sol. Energy Mater. Sol. Cells, 25, 1992, 315–25.CrossRef
Beer, P. D., Kocian, O., Mortimer, R. J., Ridgway, C. and Stradiotto, N. R.Electrochemical polymerisation studies of aza-1 5-crown-5 vinyl-2,2′-bipyridine ruthenium(II) complexes. J. Electroanal. Chem., 408, 1996, 61–6.CrossRefGoogle Scholar
Beer, P. D., Kocian, O. and Mortimer, R. J.Novel mono- and di-ferrocenyl bipyridyl ligands: syntheses, electrochemistry and electropolymerisation studies of their ruthenium(II) complexes. J. Chem. Soc., Dalton Trans. 1990, 3283–8.
Beer, P. D., Kocian, O., Mortimer, R. J. and Ridgway, C.Cyclic voltammetry of benzo-1 5-crown-5 ether vinyl-bipyridyl ligands, their ruthenium(II) complexes and bismethoxyphenyl vinyl-bipyridyl ruthenium(II) complexes. Electrochemical polymerisation studies and supporting electrolyte effects. J. Chem. Soc., Faraday Trans., 89, 1993, 333–8.CrossRefGoogle Scholar
Beer, P. D., Kocian, O., Mortimer, R. J. and Ridgway, C.New alkynyl- and vinyl-linked benzo- and aza-crown ether-bipyridyl ruthenium(II) complexes which spectrochemically recognised group IA and IIA metal cations. J. Chem. Soc., Dalton Trans., 1993, 2629–38.CrossRefGoogle Scholar
Leasure, R. M., Ou, W., Moss, J. A., Linton, R. W. and Meyer, T. J.Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes, Chem. Mater., 8, 1996, 264–73.CrossRefGoogle Scholar
Mashiko, T. and Dolphin, D. Porphyrins, hydroporphyrins, azaporphyrins, phthalocyanines, corroles, corrins and related macrocycles. In Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R. D. and McCleverty, J. A. (eds.), Oxford, Pergamon, 1987, vol. 2, ch. 21.1.Google Scholar
Leznoff, C. C. and Lever, A. B. P. (eds.) Phthalocyanines: Properties and Applications, New York, Wiley, vol. 1 (1989); vol. 2 (1993); vol. 3 (1993); vol. 4 (1996).Google Scholar
Gregory, P. Metal complexes as speciality dyes and pigments. In Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, McCleverty, J. A. and Meyer, T. J. (eds.), Oxford, Elsevier, 2003, vol. 9, pp. 549–79.Google Scholar
Passard, M., Blanc, J. P. and Maleysson, C.Gaseous oxidation and compensating reduction of lutetium bis-phthalocyanine and lutetium phthalo-naphthalocyanine films. Thin Solid Films, 271, 1995, 8–14.CrossRefGoogle Scholar
Moskalev, P. N. and Kirin, I. S.. Effects of electrode potential on the absorption spectrum of a rare-rarth diphthalocyanine layer. Opt. Spectros., 29, 1970, 220.Google Scholar
Collins, G. C. S. and Schiffrin, D. J.The electrochromic properties of lutetium and other phthalocyanines. J. Electroanal. Chem., 139, 1982, 335–69.CrossRefGoogle Scholar
Collins, G. C. S. and Schiffrin, D. J.The properties of electrochromic film electrodes of lanthanide diphthalocyanines in ethylene-glycol. J. Electrochem. Soc., 132, 1985, 1835–42.CrossRefGoogle Scholar
Nicholson, M. M. and Pizzarello, F. A.Charge transport in oxidation product of lutetium diphthalocyanine. J. Electrochem. Soc., 126, 1979, 1490–5.CrossRefGoogle Scholar
Nicholson, M. M. and Pizzarello, F. A.Galvanic transients in lutetium diphthalocyanine films. J. Electrochem. Soc., 127, 1980, 821–7.CrossRefGoogle Scholar
Nicholson, M. M. and Pizzarello, F. A.Effects of the gaseous environment on propagation of anodic reaction boundaries in lutetium diphthalocyanine films. J. Electrochem. Soc., 127, 1980, 2617–20.CrossRefGoogle Scholar
Nicholson, M. M. and Pizzarello, F. A.Cathodic electrochromism of lutetium diphthalocyanine films. J. Electrochem. Soc., 128, 1981, 1740–3.CrossRefGoogle Scholar
Pizzarello, F. A. and Nicholson, M. M.Kinetics of colour reversal in lutetium diphthalocyanine oxidation-products formed with different anions. J. Electrochem. Soc., 128, 1981, 1288–90.CrossRefGoogle Scholar
Nicholson, M. M.Lanthanide diphthalocyanines – electrochemistry and display applications. Ind. Eng. Chem., Prod. Res. Develop., 21, 1982, 261–6.CrossRefGoogle Scholar
Chang, A. T. and Marchon, J. C.Preparation and characterization of oxidized and reduced forms of lutetium diphthalocyanine. Inorg. Chim. Acta, 53, 1981, L241–3.CrossRefGoogle Scholar
Moskalev, P. N. and Shapkin, G. N.Electrochemical properties of the diphthalocyanines of lanthanides. Sov. Electrochem., 14, 1978, 486–8.Google Scholar
Sammells, A. F. and Pujare, N. U.Solid-state electrochromic cell using lutecium diphthalocyanine. J. Electrochem. Soc., 133, 1986, 1065–6.CrossRefGoogle Scholar
Moskalev, P. N., Shapkin, G. N. and Darovskikh, A. N.Preparation and properties of electrochemically oxidised rare-earth element and americium diphthalocyanine. Russ. J. Inorg. Chem., 24, 1979, 188–92.Google Scholar
Green, J. M. and Faulkner, L. R.Reversible oxidation and re-reduction of entire thin-films of transition-metal phthalocyanines. J. Am. Chem. Soc., 105, 1983, 2950–5.CrossRefGoogle Scholar
Kohno, Y., Masui, M., Ono, K., Wada, T. and Takeuchi, M.Electrochromic behavior of amorphous copper phthalocyanine thin-films. Jpn. J. Appl. Phys., 31, 1992, L252–3.CrossRefGoogle Scholar
Silver, J., Lukes, P., Hey, P. and Ahmet, M. T.Electrochromism in the transition-metal phthalocyanines. 2. Structural-changes in the properties of Cr(Pc) and [Mn(Pc)] films. J. Mater. Chem., 2, 1992, 841–7.CrossRefGoogle Scholar
Starke, M., Androsche, I. and Hamann, C.A solid-state electrochromic cell using erbium-diphthalocyanine. Phys. Status Solidi A, 120, 1990, K95–9.CrossRefGoogle Scholar
Silver, J., Billingham, J. and Barber, D. J. Thin films of zirconium and rare-earth element bis-phthalocyanines: changes in structure caused by gas adsorption/reaction. In Shi, C., Li, H. and Scott, A. (eds.), The First Pacific Rim International Conference on Advanced Materials and Processing. Warrendale, PA, The Minerals, Metals and Materials Society, 1992, 521–5.Google Scholar
Silver, J., Lukes, P., Houlton, A., Howe, S., Hey, P. and Ahmet, M. T.Electrochromism in the transition-metal phthalocyanines, 3: molecular-organization, reorganization and assembly under the influence of an applied electric-field – response of Fe(Pc) and [Fe(Pc)Cl]. J. Mater. Chem., 2, 1992, 849–55.CrossRefGoogle Scholar
Kahl, J. L., Faulkner, L. R., Dwarakanath, K. and Tackikawa, H.Reversible oxidation and re-reduction of magnesium phthalocyanine electrodes – electrochemical-behavior and in situ Raman spectroscopy. J. Am.Chem. Soc., 108, 1986, 5438–40.CrossRefGoogle Scholar
Silver, J., Lukes, P., Hey, P. and Ahmet, M. T.Electrochromism in titanyl and vanadyl phthalocyanine thin-films. J. Mater. Chem., 1, 1991, 881–8.CrossRefGoogle Scholar
Corbeau, P., Riou, M. T., Clarisse, C., Bardin, M. and Plichon, V.Spectroelectrochemical properties of uranium diphthalocyanine. J. Electroanal. Chem., 274, 1989, 107–15.CrossRefGoogle Scholar
Petty, M., Lovett, D. R., Miller, J. and Silver, J.Electrochemical salt formation in bis(phthalocyaninato)ytterbium(III)-stearic acid Langmuir Blodgett films. J. Mater. Chem., 1, 1991, 971–6.CrossRefGoogle Scholar
Lukas, B., Lovett, D. R. and Silver, J.Electrochromism in mixed Langmuir Blodgett films containing rare-earth bisphthalocyanines. Thin Solid Films, 210–11, 1992, 213–15.CrossRefGoogle Scholar
Muto, J. and Kusayanagi, K.Electrochromic properties of zinc phthalocyanine with solid electrolyte. Phys. Status Solidi A, 126, 1991, K129–32.CrossRefGoogle Scholar
Silver, J., Lukes, P., Howe, S. D. and Howlin, B.Synthesis, structure, and spectroscopic and electrochromic properties of bis(phthalocyaninato)-zirconium(IV). J. Mater. Chem., 1, 1991, 29–35.CrossRefGoogle Scholar
Frampton, C. S., O'Connor, J. M., Peterson, J. and Silver, J.Enhanced colours and properties in the electrochromic behavior of mixed rare-earth-element bisphthalocyanines. Displays, 9, 1988, 174–8.CrossRefGoogle Scholar
Walton, D., Ely, B. and Elliott, G.Investigations into the electrochromism of lutetium and ytterbium diphthalocyanines. J. Electrochem. Soc., 128, 1981, 2479–84.CrossRefGoogle Scholar
Irvine, J. T. S., Eggins, B. R. and Grimshaw, J.The cyclic voltammetry of some sulfonated transition-metal phthalocyanines in dimethylsulfoxide and in water. J. Electroanal. Chem., 271, 1989, 161–72.CrossRefGoogle Scholar
Leznoff, C. C., Lam, H., Marcuccio, S. M., Newin, W. A., Janda, P., Kobayashi, N. and Lever, A. B. P.A planar binuclear phthalocyanine and its dicobalt derivatives. J. Chem. Soc., Chem. Commun., 1987, 699–701.CrossRefGoogle Scholar
Nevin, W. A., Hempstead, M. R., Liu, W., Leznoff, C. C. and Lever, A. B. P.Electrochemistry and spectroelectrochemistry of mononuclear and binuclear cobalt phthalocyanines. Inorg. Chem., 26, 1987, 570–7.CrossRefGoogle Scholar
Nevin, W. A., Liu, W., Greenberg, S., Hempstead, M. R., Marcuccio, S. M., Melnik, M., Leznoff, C. C. and Lever, A. B. P.Synthesis, aggregation, electrocatalytic activity, and redox properties of a tetranuclear cobalt phthalocyanine. Inorg. Chem., 26, 1987, 891–9.CrossRefGoogle Scholar
Nevin, W. A., Liu, W. and Lever, A. B. P.Dimerization of mononuclear and binuclear cobalt phthalocyanines. Can. J. Chem., 65, 1987, 855–8.CrossRefGoogle Scholar
Nevin, W. A., Liu, W., Melnik, M. and Lever, A. B. P.Spectroelectrochemistry of cobalt and iron tetrasulfonated phthalocyanines. J. Electroanal. Chem., 213, 1986, 217–34.CrossRefGoogle Scholar
Yamana, M., Kanda, K., Kashiwazaki, N., Yamamoto, M., Nakano, T. and Walton, C.Preparation of plasma-polymerized YbPc2 films and their electrochromic properties. Jpn. J. Appl. Phys., 28, 1989, L1592–4.CrossRefGoogle Scholar
Kashiwazaki, N.New complementary electrochromic display utilizing polymeric YbPc2 and Prussian blue films. Sol. Energy Mater. Sol. Cells, 25, 1992, 349–59.CrossRefGoogle Scholar
Kashiwazaki, N.Iodized polymeric Yb-diphthalocyanine films prepared by plasma polymerization method. Jpn. J. Appl. Phys., 31, 1992, 1892–6.CrossRefGoogle Scholar
Moore, D. J. and Guarr, T. F.Electrochromic properties of electrodeposited lutetium diphthalocyanine thin-films. J. Electroanal. Chem., 314, 1991, 313–21.CrossRefGoogle Scholar
Li, H. F. and Guarr, T. F.Reversible electrochromism in polymeric metal phthalocyanine thin-films. J. Electroanal. Chem., 297, 1991, 169–83.CrossRefGoogle Scholar
Kimura, M., Horai, T., Hanabusa, K. and Shirai, H.Electrochromic polymer derived from oxidized tetrakis(2-hydroxyphenoxy) phthalocyaninatocobalt(II) complex. Chem. Lett., 7, 1997, 653–4.CrossRefGoogle Scholar
Besbes, S., Plichon, V., Simon, J. and Vaxiviere, J.Electrochromism of octaalkoxymethyl-substituted lutetium diphthalocyanine. J. Electroanal. Chem., 237, 1987, 61–8.CrossRefGoogle Scholar
Jones, R., Krier, A. and Davidson, K.Structure, electrical conductivity and electrochromism in thin films of substituted and unsubstituted lanthanide bisphthalocyanines. Thin Solid Films, 298, 1997, 228–36.CrossRefGoogle Scholar
Granito, C., Goldenberg, L. M., Bryce, M. R., Monkman, A. P., Troisi, L., Pasimeni, L. and Petty, M. C.Optical and electrochemical properties of metallophthalocyanine derivative Langmuir–Blodgett films. Langmuir, 12, 1996, 472–6.CrossRefGoogle Scholar
Rodríguez-Méndez, M. L., Souto, J., Saja, J. A. and Aroca, R.Electrochromic display based on Langmuir Blodgett films of praseodymium bisphthalocyanine. J. Mater. Chem., 5, 1995, 639–42.CrossRefGoogle Scholar
Schlettwein, D., Kaneko, M., Yamada, A., Wöhrle, D. and Jaeger, N. I.Light-induced dioxygen reduction at thin-film electrodes of various porphyrins. J. Phys. Chem., 95, 1991, 1748–55.CrossRefGoogle Scholar
Yanagi, H. and Toriida, M.Electrochromic oxidation and reduction of cobalt and zinc naphthalocyanine thin-films. J. Electrochem. Soc., 141, 1994, 64–70.CrossRefGoogle Scholar
Guyon, F., Pondaven, A. and L'Her, M.Synthesis and characterization of a novel lutetium(III) triple-decker sandwich compound – a tris(1,2-naphthalocyaninato) complex. J. Chem. Soc., Chem. Commun., 1994, 1125–6.CrossRefGoogle Scholar
Yamada, Y., Kashiwazaki, N., Yamamoto, M. and Nakano, T.Electrochromic effects on polymeric co-pyridinoporphyrazine films prepared by electrochemical polymerisation. Displays, 9, 1988, 190–8.Google Scholar
Ng, D. K. P. and Jiang, J.Sandwich-type heteroleptic phthalocyaninato and porphyrinato metal complexes. Chem. Soc. Rev., 26, 1997, 433–42.CrossRefGoogle Scholar
Silver, J., Sosa-Sanchez, J. L. and Frampton, C. S.Structure, electrochemistry, and properties of bis(ferrocenecarboxylato)(phthalocyaninato)silicon(IV) and its implications for (Si(Pc)O)n polymer chemistry. Inorg. Chem., 37, 1988, 411–17.CrossRefGoogle Scholar
Dodd, J. W. and Hush, N. S.The negative ions of some porphin and phthalocyanine derivatives, and their electronic spectra. J. Chem. Soc,. 1964, 4607–12.CrossRefGoogle Scholar
Closs, G. L. and Closs, L. E.Negative ions of porphin metal complexes. J. Am. Chem. Soc., 85, 1963, 818–19.CrossRefGoogle Scholar
Felton, R. H. and Linschitz, H.Polarographic reduction of porphyrins and electron spin resonance of porphyrin anions. J. Am. Chem. Soc., 88, 1966, 1112–16.CrossRefGoogle Scholar
Fajer, J., Borg, D. C., Forman, A., Dolphin, D. and Felton, R. H.π-Cation radicals and dications of metalloporphyrins. J. Am. Chem. Soc., 92, 1970, 3451–9.CrossRefGoogle ScholarPubMed
Felton, R. H., Dolphin, D., Borg, D. C. and Fajer, J.Cations and cation radicals of porphyrins and ethyl chlorophyllide. J. Am. Chem. Soc., 91, 1969, 196–8.CrossRefGoogle Scholar
Aziz, A., Narasimhan, K. L., Periasamy, N. and Maiti, N. C.Electrical and optical properties of porphyrin monomer and its J-aggregate. Philos. Mag. B, 79, 1999, 993–1004.CrossRefGoogle Scholar
Mortimer, R. J., Rowley, N. M. and Vickers, S. J. Unpublished work.
Bonnett, R. Metal complexes for photodynamic therapy. In Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, McCleverty, J. A. and Meyer, T. J. (eds.), Oxford, Elsevier, 2003, vol. 9, pp. 945–1003.Google Scholar
Nazeeruddin, M. K. and Grätzel, M. Conversion and storage of solar energy using dye-sensitized nanocrystalline TiO2 cells. In Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, McCleverty, J. A. and Meyer, T. J. (eds.), Oxford, Elsevier, 2003, vol. 9, pp. 719–58.Google Scholar
Fabian, J., Nakazumi, H. and Matsuoka, M.Near-infrared absorbing dyes. Chem. Rev., 92, 1992, 1197–226.CrossRefGoogle Scholar
Emmelius, M., Pawlowski, G. and Vollmann, H. W.Materials for optical data storage. Angew. Chem. Int. Ed. Engl., 28, 1989, 1445–71.CrossRefGoogle Scholar
Fabian, J. and Zahradnik, R.The search for highly-coloured organic compounds. Angew. Chem. Int. Ed. Engl., 28, 1989, 677–94.CrossRefGoogle Scholar
Franke, E. B., Trimble, C. L., Hale, J. S., Schubert, M. and Woollam, J. A.Infrared switching electrochromic devices based on tungsten oxide. J. Appl. Phys., 88, 2000, 5777–84.CrossRefGoogle Scholar
Schwendeman, I., Hwang, J., Welsh, D. M., Tanner, D. B. and Reynolds, J. R.Combined visible and infrared electrochromism using dual polymer devices. Adv. Mater., 13, 2001, 634–7.3.0.CO;2-3>CrossRefGoogle Scholar
McCleverty, J. A.Metal 1,2-dithiolene and related complexes. Prog. Inorg. Chem., 10, 1968, 49–221.Google Scholar
Mueller-Westerhoff, U. T. and Vance, B. Dithiolenes and related species. In Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R. D. and McCleverty, J. A. (eds.), Oxford, Pergamon, 1987; vol. 2, pp. 595–631.Google Scholar
Mueller-Westerhoff, U. T., Vance, B. and Yoon, D. I.The synthesis of dithiolene dyes with strong near-IR absorption. Tetrahedron, 47, 1991, 909–32.CrossRefGoogle Scholar
Bigoli, F., Deplano, P., Devillanova, F. A., Lippolis, V., Lukes, P. J., Mercuri, M. L., Pellinghelli, M. A. and Trogu, E. F.New neutral nickel dithiolene complexes derived from 1,3-dialkylimidazolidine-2,4,5-trithione, showing remarkable near-IR absorption. J. Chem. Soc., Chem. Commun., 1995, 371–2.CrossRefGoogle Scholar
Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pintus, G., Trogu, E. F., Zonneda, G., Wong, H. H. and Williams, J. M.Novel oxidation and reduction products of the neutral nickel-dithiolene [Ni(iPr2 timdt)2] (iPr2timdt is the monoanion of 1,3-diisopropylimidazolidine-2,4,5-trithione). Inorg. Chim. Acta, 273, 1998, 175–83.CrossRefGoogle Scholar
Bigoli, F., Deplano, P., Devillanova, F. A., Ferraro, J. R., Lippolis, V., Lukes, P. J., Mercuri, M. L., Pellinghelli, M. A., Trogu, E. F. and Williams, J. M.Syntheses, X-ray crystal structures, and spectroscopic properties of new nickel dithiolenes and related compounds. Inorg. Chem., 36, 1997, 1218–26.CrossRefGoogle ScholarPubMed
Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lelj, F., Lippolis, V., Pedraglio, S. and Verani, G.Synthesis, X-ray crystal structure and spectroscopic characterisation of the new dithiolene [Pd(Et2timdt)2] and of its adduct with molecular diiodine [Pd(Et2timdt) 2]·I2·CHCl3 (Et2 timdt = monoanion of 1,3-diethylimidazolidine-2,4,5-trithione. J. Chem. Soc., Dalton Trans., 1998, 3731–6.CrossRefGoogle Scholar
Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Geran, A., Isaia, F., Lelj, F., Lippolis, V. and Verani, G.New [M(R,R'timdt)2] metal-dithiolenes and related compounds (M = Ni, Pd, Pt; R,R'timdt = monoanion of disubstituted imidazolidine-2,4,5-trithiones): an experimental and theoretical investigation. J. Am. Chem. Soc., 121, 1999, 7098–107.CrossRefGoogle Scholar
Bigoli, F., Cassoux, P., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pintus, G., Serpe, A. and Trogu, E. F.Synthesis, structure and properties of new unsymmetrical nickel dithiolene complexes useful as near-infrared dyes. J. Chem. Soc., Dalton Trans., 2000, 4639–44.CrossRefGoogle Scholar
Deplano, P., Mercuri, M. L., Pintus, G. and Trogu, E. F.New symmetrical and unsymmetrical nickel-dithiolene complexes useful as near-IR dyes and precursors of sulfur-rich donors. Comments Inorg. Chem., 22, 2001, 353–74.CrossRefGoogle Scholar
Laye, R. H., Couchman, S. M. and Ward, M. D.Comparison of metal–metal electronic interactions in an isomeric pair of dinuclear ruthenium complexes with different bridging pathways: effective hole-transfer through a bis-phenolate bridge. Inorg. Chem., 40, 2001, 4089–92.CrossRefGoogle Scholar
Kasack, V., Kaim, W., Binder, H., Jordanov, J. and Roth, E.When is an odd-electron dinuclear complex a mixed-valent species? – tuning of ligand-to-metal spin shifts in diruthenium(III, II) complexes of noninnocent bridging ligands O = C(R)N–NC(R) = O. Inorg. Chem., 34, 1995, 1924–33.CrossRefGoogle Scholar
Rocha, R. C. and Toma, H. E.Intervalence transfer in a new benzotriazolate bridged ruthenium–iron complex. Can. J. Chem., 79, 2001, 145–56.Google Scholar
Mosher, P. J., Yap, G. P. A. and Crutchley, R. J. Adonor-acceptor bridging ligand in a class III mixed-valence complex. Inorg. Chem., 40, 2001, 1189–95.CrossRefGoogle Scholar
Qi, Y., Desjardins, P. and Wang, Z. Y.Novel near-infrared active dinuclear ruthenium complex materials: effects of substituents on optical attenuation. J. Opt. A: Pure Appl. Opt., 4, 2002, S273–7.CrossRefGoogle Scholar
Lee, S.-M., Marcaccio, M., McCleverty, J. A. and Ward, M. D.Dinuclear complexes containing ferrocenyl and oxomolybdenum(V) groups linked by conjugated bridges: a new class of electrochromic near-infrared dye. Chem. Mater., 10, 1998, 3272–4.CrossRefGoogle Scholar
Harden, N. C., Humphrey, E. R., Jeffrey, J. C., Lee, S.-M., Marcaccio, M., McCleverty, J. A., Rees, L. H. and Ward, M. D.Dinuclear oxomolybdenum(V) complexes which show strong electrochemical interactions across bis-phenolate bridging ligands: a combined spectroelectrochemical and computational study. J. Chem. Soc., Dalton Trans., 1999, 2417–26.CrossRefGoogle Scholar
Bayly, S. R., Humphrey, E. R., Chair, H., Paredes, C. G., Bell, Z. R., Jeffrey, J. C., McCleverty, J. A., Ward, M. D., Totti, F., Gatteschi, D., Courric, S., Steele, B. R. and Screttas, C. G.Electronic and magnetic metal–metal interactions in dinuclear oxomolybdenum(V) complexes across bis-phenolate bridging ligands with different spacers between the phenolate termini: ligand-centred vs. metal-centred redox activity. J. Chem. Soc., Dalton Trans., 2001, 1401–14.CrossRefGoogle Scholar
McDonagh, A. M., Ward, M. D. and McCleverty, J. A.Redox and UV/VIS/NIR spectroscopic properties of tris(pyrazolyl)borato-oxo-molybdenum(V) complexes with naphtholate and related co-ligands. New J. Chem., 25, 2001, 1236–43.CrossRefGoogle Scholar
McDonagh, A. M., Bayly, S. R., Riley, D. J., Ward, M. D., McCleverty, J. A., Cowin, M. A., Morgan, C. N., Verrazza, R., Penty, R. V. and White, I. H.A variable optical attenuator operating in the near-infrared region based on an electrochromic molybdenum complex. Chem. Mater., 12, 2000, 2523–4.CrossRefGoogle Scholar
Kowallick, R., Jones, A. N., Reeves, Z. R., Jeffrey, J. C., McCleverty, J. A. and Ward, M. D.Spectroelectrochemical studies and molecular orbital calculations on mononuclear complexes [Mo(TpMe,Me)(NO)Cl(py)] (where py is a substituted pyridine derivative): electrochromism in the near-infrared region of the electronic spectrum. New J. Chem., 23, 1999, 915–21.CrossRefGoogle Scholar
Haga, M., Dodsworth, E. S. and Lever, A. B. P.Catechol–quinone redox series involving bis(bipyridine)ruthenium(II) and tetrakis(pyridine)ruthenium(II). Inorg. Chem., 25, 1986, 447–53.CrossRefGoogle Scholar
Joulié, L. F., Schatz, E., Ward, M. D., Weber, F. and Yellowlees, L. J.Electrochemical control of bridging ligand conformation in a binuclear complex – a possible basis for a molecular switch. J. Chem. Soc., Dalton Trans., 1994, 799–804.CrossRefGoogle Scholar
Barthram, A. M., Cleary, R. L., Kowallick, R. and Ward, M. D.A new redox-tunable near-IR dye based on a trinuclear ruthenium(II) complex of hexahydroxytriphenylene. Chem. Commun., 1998, 2695–6.CrossRefGoogle Scholar
Barthram, A. M. and Ward, M. D.Synthesis, electrochemistry, UV/VIS/NIR spectroelectrochemistry and ZINDO calculations of a dinuclear ruthenium complex of the tetraoxolene bridging ligand 9-phenyl-2,3,7-trihydroxy-6-fluorone. New J. Chem., 24, 2000, 501–4.CrossRefGoogle Scholar
Barthram, A. M., Cleary, R. L., Jeffery, J. C., Couchman, S. M. and Ward, M. D.Effects of ligand topology on the properties of dinuclear ruthenium complexes of bis-semiquinone bridging ligands. Inorg. Chim. Acta, 267, 1998, 1–5.CrossRefGoogle Scholar
Barthram, A. M., Reeves, Z. R., Jeffrey, J. C. and Ward, M. D.Polynuclear osmium–dioxolene complexes: comparison of electrochemical and spectroelectrochemical properties with those of their ruthenium analogues. J. Chem. Soc., Dalton Trans., 2000, 3162–9.CrossRefGoogle Scholar
García-Cañadas, J., Meacham, A. P., Peter, L. M. and Ward, M. D.Electrochromic switching in the visible and near IR with a Ru–dioxolene complex adsorbed on to a nanocrystalline SnO2 electrode. Electrochem. Commun., 5, 2003, 416–20.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×