Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T08:04:10.638Z Has data issue: false hasContentIssue false

6 - Metal oxides

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Introduction to metal-oxide electrochromes

Metal oxides as thin films feature widely in the literature, in large part owing to their photochemical stability (see Section 6.1.2); by contrast, most, if not all, organic electrochromes may be susceptible to photochemical degradation.

The oxides of the following transition metals are electrochromic: cerium, chromium, cobalt, copper, iridium, iron, manganese, molybdenum, nickel, niobium, palladium, praseodymium, rhodium, ruthenium, tantalum, titanium, tungsten and vanadium. Most of the electrochromic colours derive from intervalence charge-transfer optical transitions, as described in Section 4.4. The intervalence coloured forms of most transition-metal oxide electrochromes are in the range blue or grey through to black; it is much less common for transition-metal oxides to form other colours by intervalence transitions (see Table 6.1).

The oxides of tungsten, molybdenum, iridium and nickel show the most intense electrochromic colour changes. Other metal oxides of lesser colourability are therefore more useful as optically passive, or nearly passive, counter electrodes; see Section 1.4 on ‘secondary electrochromism’.

At least one redox state of each of the oxides IrO2, MoO3, Nb2O5, TiO2, NiO, RhO2 and WO3 can be prepared as an essentially colourless thin film, so allowing the electrochromic transition colourless (clear)coloured. This property finds application in on–off or light-intensity modulation roles. Other oxides in Section 6.2 demonstrate electrochromism differently by showing two colours, i.e. switching as colour 1colour 2, one of these colours often being much more intense than the other. Display-device applications can be envisaged for the latter group of electrochromes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rest, A. Polyene and linearly conjugated dyes. In Coyle, J. D., Hill, R. R. and Roberts, D. R. (eds.), Light, Chemical Change and Life: A Source Book in Photochemistry, Milton Keynes, Open University, 1982Google Scholar
Granqvist, C. G.Electrochromic oxides: a unified view. Solid State Ionics, 70–1, 1994, 678–85.CrossRefGoogle Scholar
Granqvist, G. C.Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995Google Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995CrossRefGoogle Scholar
Dautremont-Smith, W. C.Transition metal oxide electrochromic materials and displays: a review. Part 1: oxides with cathodic coloration. Displays, 3, 1982, 3–22.CrossRefGoogle Scholar
Dautremont-Smith, W. C.Transition metal oxide electrochromic materials and displays, a review. Part 2: oxides with anodic coloration. Displays, 3, 1982, 67–80.CrossRefGoogle Scholar
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3. In Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.CrossRefGoogle Scholar
Hagenmuller, P. Tungsten bronzes, vanadium bronzes and related compounds. In Comprehensive Inorganic Chemistry, New York, Pergamon, 1973, vol. 4, pp. 541–605.
Meerakker, J. E. A. M., Baarslag, P. C. and Scholten, M.On the mechanism of ITO etching in halogen acids: the influence of oxidizing agents. J. Electrochem. Soc., 142, 1995, 2321–6.CrossRefGoogle Scholar
Monk, P. M. S. and Man, C. M.Reductive ion insertion into thin-film indium tin oxide (ITO) in aqueous acidic solutions: the effect of leaching of indium from the ITO. J. Mater. Sci., Electron. Mater., 10, 1999, 101–7.CrossRefGoogle Scholar
Córdoba-Torresi, S. I., Gabrielli, C., Goff, Hugot-Le A. and Torresi, R.Electrochromic behaviour of nickel oxide electrodes, I: identification of the colored state using quartz-crystal microbalance. J. Electrochem. Soc., 138, 1991, 1548–1553.Google Scholar
Randin, J.-P.Chemical and electrochemical stability of WO3 electrochromic films in liquid electrolytes. J. Electron. Mater., 7, 1978, 47–63.CrossRefGoogle Scholar
Randin, J.-P.Ion-containing polymers as semisolid electrolytes in WO3-based electrochromic devices. J. Electrochem. Soc., 129, 1982, 1215–1220.CrossRefGoogle Scholar
Arnoldussen, T. C.A model for electrochromic tungsten oxide microstructure and degradation. J. Electrochem. Soc., 128, 1981, 117–23.CrossRefGoogle Scholar
Duffy, J. A., Ingram, M. D. and Monk, P. M. S.The effect of moisture on tungsten oxide electrochromism in polymer electrolyte devices. Solid State Ionics, 58, 1992, 109–14.CrossRefGoogle Scholar
Burke, L. D. and Scannell, R. A.The effect of UV light on the hydrous oxides of iridium. J. Electroanal. Chem., 257, 1988, 101–21.CrossRefGoogle Scholar
Nakaoka, K., Ueyama, J. and Ogura, K.Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J. Electroanal. Chem., 571, 2004, 93–9.CrossRefGoogle Scholar
Carpenter, M. K. and Corrigan, D. A.Photoelectrochemistry of nickel hydroxide thin films. J. Electrochem. Soc., 136, 1989, 1022–6.CrossRefGoogle Scholar
Fleisch, T. H. and Mains, G. J.An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys., 76, 1982, 780–6.CrossRefGoogle Scholar
Scarminio, J., Lourenco, A. and Gorenstein, A.Electrochromism and photochromism in amorphous molybdenum oxide films. Thin Solid Films, 302, 1997, 66–70.CrossRefGoogle Scholar
Mondragon, M. N., Zelaya-Angel, O., Ramirez-Bon, R., Herrera, J. L. and Reyes-Betanzo, C.Refraction index and oscillator strength in MoO3 photocolored films. Physica B: Condens. Matter, 271, 1999, 369–73.CrossRefGoogle Scholar
Kullman, L., Azens, A. and Granqvist, C. G.Electrochromism and photochromism of reactively DC magnetron sputtered Mo–Ti oxide films. Sol. Energy Mater. Sol. Cells, 61, 2000, 189–96.CrossRefGoogle Scholar
Deb, S. K. and Chopoorian, J. A.Optical properties and color-formation in thin films of molybdenum trioxide. J. Appl. Phys., 37, 1966, 4818–25.CrossRefGoogle Scholar
Özer, N.Reproducibility of the coloration processes in TiO2 films. Thin Solid Films, 214, 1992, 17–24.CrossRefGoogle Scholar
Gomez, M., Rodriguez, J., Lindquist, S.-E. and Granqvist, C. G.Photoelectrochemical studies of dye-sensitized polycrystalline titanium oxide thin films prepared by sputtering. Thin Solid Films, 342, 1999, 148–52.CrossRefGoogle Scholar
Gomez, M. M., Beermann, N., Lu, J.et al. Dye-sensitized sputtered titanium oxide films for photovoltaic applications: influence of the O2/Ar gas flow ratio during the deposition. Sol. Energy Mater. Sol. Cells, 76, 2003, 37–56.CrossRefGoogle Scholar
Bechinger, C., Burdis, M. S. and Zhang, J.-G.Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun., 101, 1997, 753–6.CrossRefGoogle Scholar
Gavrilyuk, A. I.Photochromism in WO3 thin films. Electrochim. Acta, 44, 1999, 3027–37.CrossRefGoogle Scholar
Avellaneda, C. O. and Bulhões, L. O. S.Photochromic properties of WO3 and WO3:X (X = Ti, Nb, Ta and Zr) thin films. Solid State Ionics, 165, 2003, 117–121.CrossRefGoogle Scholar
Scarminio, J.Stress in photochromic and electrochromic effects on tungsten oxide film. Sol. Energy Mater. Sol. Cells, 79, 2003, 357–68.CrossRefGoogle Scholar
Argazzi, R., Iha, Murakami N. Y., Zabri, H., Odobel, F. and Bignozzi, C. A.Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coord. Chem. Rev., 248, 2004, 1299–316.CrossRefGoogle Scholar
Bedja, I., Hotchandani, S., Carpentier, R., Vinodgopal, K. and Kamat, P. V.Electrochromic and photoelectrochemical behavior of thin WO3 films prepared from quantized colloidal particles. Thin Solid Films, 247, 1994, 195–200.CrossRefGoogle Scholar
Su, L., Zhang, L., Fang, J., Xu, M. and Lu, Z.Electrochromic and photoelectrochemical behavior of electrodeposited tungsten trioxide films. Sol. Energy Mater. Sol. Cells, 58, 1999, 133–40.CrossRefGoogle Scholar
Loo, B. H., Yao, J. N., Dwain Coble, H., Hashimoto, K. and Fujishima, A.A Raman microprobe study of the electrochromic and photochromic thin films of molybdenum trioxide and tungsten trioxide. Appl. Surf. Sci., 81, 1994, 175–81.CrossRefGoogle Scholar
Green, M.Atom motion in tungsten bronze thin films. Thin Solid Films, 50, 1978, 148–50.CrossRefGoogle Scholar
Ord, J. L., Bishop, S. D. and DeSmet, D. J.Hydrogen insertion into anodic oxide films on vanadium. Proc. Electrochem. Soc., 90–2, 1990, 116–24.Google Scholar
Dini, D., Passerini, S., Scrosati, B. and Decker, F.Stress changes in electrochromic thin film electrodes: laser beam deflection method (LBDM) as a tool for the analysis of intercalation processes. Sol. Energy Mater. Sol. Cells, 56, 1999, 213–21.CrossRefGoogle Scholar
Barbero, C., Miras, M. C. and Kotz, R.Electrochemical mass transport studied by probe beam deflection: potential step experiments. Electrochim. Acta, 37, 1992, 429–37.CrossRefGoogle Scholar
Giron, J.-C. and Lampert, C. M.Study by laser probe deflection of the ionic mechanisms of nickel oxide thin films. Proc. Electrochem. Soc., 94–2, 1994, 82–99.Google Scholar
Dini, D. and Decker, F.Stress in thin films of metal oxide electrodes for intercalation reactions. Electrochim. Acta, 43, 1998, 2919–23.CrossRefGoogle Scholar
Plinchon, V., Giron, J.-C., Deloulbe, J. P. and Lerbet, F.Detection by mirage effect of the counter-ion flux between an electrochrome and a liquid electrolyte: application to WO3, Prussian blue and lutetium diphthalocyanine film. Proc. SPIE, 1536, 1991, 37–47.CrossRefGoogle Scholar
Nagai, J.Characterization of evaporated nickel oxide and its application to electrochromic glazing. Sol. Energy Mater. Sol. Cells, 31, 1993, 291–9.CrossRefGoogle Scholar
Faria, I. C., Torresi, R. and Gorenstein, A.Electrochemical intercalation in NiOx thin films. Electrochim. Acta, 38, 1993, 2765–71.CrossRefGoogle Scholar
Krtil, P., Fattakhova, D., Kavan, L., Burnside, S. and Grätzel, M.Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes. Solid State Ionics, 135, 2000, 101–6.CrossRefGoogle Scholar
Bohnke, O., Vuillemin, B., Gabrielli, C., Keddam, M. and Perrot, H.An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide, II: experimental results and comparison with model calculations. Electrochim. Acta, 40, 1995, 2765–73.CrossRefGoogle Scholar
Avellaneda, C. O., Bueno, P. R., Faria, R. C. and Bulhões, L. O. S.Electrochromic properties of lithium doped WO3 films prepared by the sol–gel process. Electrochim. Acta, 46, 2001, 1977–81.CrossRefGoogle Scholar
Torresi, S. I. C., Gorenstein, A., Torresi, R. M. and Vazquez, M. V.Electrochromism of WO3 in acid solutions: an electrochemical, optical and electrogravimetric study. J. Electroanal. Chem., 318, 1991, 131–44.CrossRefGoogle Scholar
Vergé, M.-G., Olsson, C.-O. A. and Landolt, D.Anodic oxide growth on tungsten studied by EQCM, EIS and AES. Corros. Sci., 46, 2004, 2583–600.CrossRefGoogle Scholar
Decker, F., Passerini, S., Pileggi, R. and Scrosati, B.The electrochromic process in non-stoichiometric nickel oxide thin film electrodes. Electrochim. Acta, 37, 1992, 1033–8.CrossRefGoogle Scholar
Talledo, A. and Granqvist, C. G.Electrochromic vanadium pentoxide based films: structural, electrochemical, and optical properties. J. Appl. Phys., 77, 1995, 4655–66.CrossRefGoogle Scholar
Lee, S.-H., Seong, M. J., Tracy, C. E., Mascarenhas, A., Pitts, J. R. and Deb, S. K.Raman spectroscopic studies of electrochromic amorphous-MoO3 thin films. Solid State Ionics, 147, 2002, 129–33.CrossRefGoogle Scholar
Goldner, R. B., Arntz, F. O., Dickson, K., Goldner, M. A., Haas, T. E., Liv, T. Y., Slaven, S., Wei, G., Wong, K. K. and Zerigian, P.Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 70–1, 1994, 613–18.CrossRefGoogle Scholar
Penin, N., Rougier, A., Laffont, L., Poizot, P. and Tarascon, J.-M.Improved cyclability by tungsten addition in electrochromic NiO thin films. Sol. Energy Mater. Sol. Cells, 90, 2005, 422–33.CrossRefGoogle Scholar
Yishiike, N. and Kondo, S.Electrochemical properties of WO3. x(H2O), II: the influence of crystallization as hydration. J. Electrochem. Soc., 131, 1984, 809–13.Google Scholar
Bell, J. M. and Skryabin, I. L.Failure modes of sol–gel deposited electrochromic devices. Sol. Energy Mater. Sol. Cells, 56, 1999, 437–48.CrossRefGoogle Scholar
Deepa, M., Kar, M. and Agnihotry, S. A.Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance. Thin Solid Films, 468, 2004, 32–42.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells, 60, 2000, 201–62.CrossRefGoogle Scholar
Kullman, L.Components of Smart Windows: Investigations of Electrochromic Films, Transparent Counter Electrodes and Sputtering Techniques, Philadelphia, Coronet, 1999Google Scholar
Venables, J. A.Introduction to Surface and Thin Film Processes, Cambridge, Cambridge University Press, 2000.CrossRefGoogle Scholar
Abdellaoui, A., Bouchikhi, B., Leveque, G., Donnadieu, A. and Bath, A.Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD. Thin Solid Films, 304, 1997, 39–44.CrossRefGoogle Scholar
Gesheva, K., Szekeres, A. and Ivanova, T.Optical properties of chemical vapor deposited thin films of molybdenum and tungsten based metal oxides. Sol. Energy Mater. Sol. Cells, 76, 2003, 563–76.CrossRefGoogle Scholar
Donnadieu, A., Davazoglou, D. and Abdellaoui, A.Structure, optical and electro-optical properties of polycrystalline WO3 and MoO3 thin films prepared by chemical vapour deposition. Thin Solid Films, 164, 1988, 333–8.CrossRefGoogle Scholar
Tracy, C. E. and Benson, D. K.Preparation of amorphous electrochromic tungsten oxide and molybdenum oxide by plasma enhanced chemical vapour deposition, J. Vac. Sci. Technol., A, 4, 1986, 2377–83.CrossRefGoogle Scholar
Gogova, D., Iossifova, A., Ivanova, T., Dimitrova, Z. and Gesheva, K.Electrochromic behavior in CVD grown tungsten oxide films. J. Cryst. Growth, 198–9, 1999, 1230–4.CrossRefGoogle Scholar
Gogova, D., Stoyanov, G. and Gesheva, K. A.Optimization of the growth rate of electrochromic WO3 coatings, in-situ grown by chemical vapor deposition at atmospheric pressure. Renewable Energy, 8, 1996, 546–50.CrossRefGoogle Scholar
Davazoglou, D. and Donnadieu, A.Electrochromism in polycrystalline WO3 thin films prepared by chemical vapour deposition at high temperature. Thin Solid Films, 164, 1988, 369–74.CrossRefGoogle Scholar
Davazoglou, D. and Donnadieu, A.Structure and optical properties of WO3 thin films prepared by chemical vapour deposition. Thin Solid Films, 147, 1987, 131–42.CrossRefGoogle Scholar
Bohnke, O., Bohnke, C., Donnadieu, A. and Davazoglou, D.Electrochromic properties of polycrystalline thin films of tungsten trioxide prepared by chemical vapour deposition. J. Appl. Electrochem., 18, 1988, 447–53.CrossRefGoogle Scholar
Davazoglou, D., Donnadieu, A. and Bohnke, O.Electrochromic effect in WO3 thin films prepared by CVD. Sol. Energy Mater., 16, 1987, 55–65.CrossRefGoogle Scholar
Donnadieu, A., Regragui, M., Abdellaoui, A. and Davazoglou, D.Optical and electrical properties of coloured and transparent states of polycrystalline WO3 thin films prepared by CVD. Proc. SPIE, 1272, 1990, 197–206.CrossRefGoogle Scholar
Kuypers, A. D., Spee, C. I. M. A., Linden, J. L., Kirchner, G., Forsyth, J. F. and Mackor, A.Plasma-enhanced CVD of electrochromic materials, Surf. Coat. Technol., 74–5, 1995, 1033–7.CrossRefGoogle Scholar
Kajiwara, K., Isobe, C. and Saitoh, M.An AES study of LPCVD Ta2O5 films on Si. Surf. Interface Anal., 19, 1992, 331–5.CrossRefGoogle Scholar
Watanabe, H., Itoh, K.-I. and Matsumoto, O.Properties of V2O5 thin films deposited by means of plasma MOCVD. Thin Solid Films, 386, 2001, 281–5.CrossRefGoogle Scholar
Forsgren, K. and Harsta, A.Halide chemical vapour deposition of Ta2O5. Thin Solid Films, 343–4, 1999, 111–14.CrossRefGoogle Scholar
Meulenkamp, E. A.Mechanism of WO3 electrodeposition from peroxy-tungstate solution. J. Electrochem. Soc., 144, 1997, 1664–72.CrossRefGoogle Scholar
Falk, U. and Salkind, A. J.Alkaline Storage Batteries, New York, Wiley, 1969Google Scholar
Corrigan, D. A. and Carpenter, M. K.Electrochromic nickel hydroxide films and the effect of foreign metal ions. SPIE Institute Series, IS4, 1990, 298–312.Google Scholar
Carpenter, M. K., Conell, R. S. and Corrigan, D. A.The electrochromic properties of hydrous nickel oxide. Sol. Energy Mater., 16, 1987, 333–46.CrossRefGoogle Scholar
Monk, P. M. S. and Ayub, S.Solid-state properties of thin film electrochromic cobalt–nickel oxide. Solid State Ionics, 99, 1997, 115–24.CrossRefGoogle Scholar
Monk, P. M. S., Chester, S. L. and Higham, D. S.Electrodeposition of cobalt oxide doped with additional metal oxides: a new electrochromic counter-electrode material. Proc. Electrochem. Soc., 94–2, 1994, 100–12.Google Scholar
Monk, P. M. S., Chester, S. L., Higham, D. S. and Partridge, R. D.Electrodeposition of cobalt oxide doped with additional metal oxides. Electrochim. Acta, 39, 1994, 2277–84.CrossRefGoogle Scholar
Corrigan, D. A.Durable electrochromic films of nickel hydroxide via chemical modifications. Sol. Energy Mater. Sol. Cells, 25, 1992, 293–300.CrossRefGoogle Scholar
Provazi, K., Giz, M. J., Dall'Antonia, L. H. and Córdoba de Torresi, S. I.The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. J. Power Sources, 102, 2001, 224–32.CrossRefGoogle Scholar
Bendert, M. and Corrigan, C. A.Effect of co-precipitated metal ions on the electrochromic properties of nickel hydroxide. J. Electrochem. Soc., 136, 1989, 1369–74.CrossRefGoogle Scholar
Corrigan, D. A. and Knight, S. L.Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction. J. Electrochem. Soc., 136, 1989, 613–19.CrossRefGoogle Scholar
Conell, R. S., Corrigan, D. A. and Powell, B. R.The electrochromic properties of sputtered nickel oxide films. Sol. Energy Mater. Sol. Cells, 25, 1992, 301–13.CrossRefGoogle Scholar
Bendert, R. M. and Corrigan, D. A.Effect of co-precipitated metal ions on the electrochromic properties of nickel hydroxide. J. Electrochem. Soc., 136, 1989, 1369–74.CrossRefGoogle Scholar
Yamanaka, K., Oakamoto, H., Kidou, H. and Kudo, T.Peroxotungstic acid coated films for electrochromic display devices. Jpn. J. Appl. Phys., 25, 1986, 1420–6.CrossRefGoogle Scholar
Shen, P. K. and Tseung, A. C. C.Study of electrodeposited tungsten trioxide thin films. J. Mater. Chem., 2, 1992, 1141–7.CrossRefGoogle Scholar
Streinz, C. C., Motupally, S. and Widner, J. W.The effect of temperature and ethanol on the deposition of nickel hydroxide films. J. Electrochem. Soc., 142, 1995, 4051–6.CrossRefGoogle Scholar
Monk, P. M. S., Ali, T. and Partridge, R. D.The effect of doping electrochromic molybdenum oxide with other metal oxides: correlation of optical and kinetic properties. Solid State Ionics, 80, 1995, 75–85.CrossRefGoogle Scholar
Guerfi, A. and Dao, L. H.Electrochromic molybdenum oxide thin films by electrodeposition. J. Electrochem. Soc., 136, 1989, L2435–6.CrossRefGoogle Scholar
Kishimoto, A., Nanba, T. and Kudo, T. Spin-coated Ta2O5. nH2O films derived from peroxo poly-tantalate solution. Seventh International Conference on Solid State Ionics, Japan, 1989, abs. 8pb–24.
Syed-Bokhari, J. K. and Tseung, A. C. C.The performance of electrochromic tungsten trioxide films doped with cobalt or nickel. J. Electrochem. Soc., 138, 1991, 2778–83.Google Scholar
Pei, K. S. and Tseung, A. C. C.In situ monitoring of electrode polarisation during the operation of an electrochromic device based on WO3. J. Electroanal. Chem., 389, 1995, 219–22.Google Scholar
Monk, P. M. S., Partridge, R. D., Janes, R. and Parker, M.Electrochromic tungsten oxide: doping with two or three other metal oxides. J. Mater. Chem., 4, 1994, 1071–4.CrossRefGoogle Scholar
Monk, P. M. S., Akhtar, S. P., Boutevin, J. and Duffield, J. R.Toward the tailoring of electrochromic bands of metal-oxide mixtures. Electrochim. Acta, 46, 2001, 2091–6.CrossRefGoogle Scholar
Andrukaitis, E. and Hill, I.Diffusion of lithium in electrodeposited vanadium oxides. J. Power Sources, 136, 2004, 290–5.CrossRefGoogle Scholar
Monk, P. M. S. and Chester, S. L.Electro-deposition of films of electrochromic tungsten oxide containing additional metal oxides. Electrochim. Acta, 38, 1993, 1521–6.CrossRefGoogle Scholar
Casella, I. G.Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. J. Electroanal. Chem., 520, 2002, 119–225.CrossRefGoogle Scholar
Pauporté, T.A simplified method for WO3 electrodeposition. J. Electochem. Soc., 149, 2002, C539–45.CrossRefGoogle Scholar
Sotti, G., Schiavon, G., Zecchin, S. and Castellato, U.Electrodeposition of amorphous Fe2O3 films by reduction of iron perchlorate in acetonitrile. J. Electrochem. Soc., 145, 1998, 385–9.Google Scholar
Yoshino, T. and Baba, N.Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition. Sol. Energy Mater. Sol. Cells, 39, 1995, 391–7.CrossRefGoogle Scholar
Zotti, G., Schiavon, G., Zecchin, S. and Casellato, U.Electrodeposition of amorphous Fe2O3 films by reduction of iron perchlorate in acetonitrile. J. Electrochem. Soc., 145, 1998, 385–9.CrossRefGoogle Scholar
Monk, P. M. S., Janes, R. and Partridge, R. D.Speciation analysis applied to the electrodeposition of precursors of neodymium cuprate and related phases: the first application of speciation modelling to a solution not at equilibrium. J. Chem. Soc., Faraday Trans., 93, 1997, 3985–90.CrossRefGoogle Scholar
Monk, P. M. S., Janes, R. and Partridge, R. D.Speciation modelling of the electroprecipitation of rare-earth cuprate and nickelate materials: speciation of aqueous solutions not at equilibrium. J. Chem. Soc., Faraday Trans., 93, 1997, 3991–7.CrossRefGoogle Scholar
Vidotti, M., Greco, C., Ponzio, E. A. and Torresi, Córdoba S.Sonochemically synthesized Ni(OH) 2 and Co(OH) 2 nanoparticles and their application in electrochromic electrodes. Electrochem. Commun., 8, 2006, 554–60.CrossRefGoogle Scholar
Gedanken, A.Using sonochemistry for the fabrication of nanomaterials. Ultrason. Sonochem., 11, 2004, 47–55.CrossRefGoogle ScholarPubMed
Jeevanandam, P., Koltypin, Y. and Gedanken, A.Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett., 1, 2001, 263–6.CrossRefGoogle Scholar
Jeevanandam, P., Koltypin, Y., Gedanken, A. and Mastai, Y.Synthesis of α-cobalt(II) hydroxide using ultrasound radiation. J. Mater. Chem., 10, 2000, 511–14.CrossRefGoogle Scholar
Evans, D. F. and Wennerström, H.The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet, 2nd edn, New York, Wiley, 1999, p. 497.Google Scholar
Bell, J. M., Skryabin, I. L. and Koplick, A. J.Large area electrochromic films—preparation and performance. Sol. Energy Mater. Sol. Cells, 68, 2001, 239–47.CrossRefGoogle Scholar
Lakeman, C. D. E. and Payne, D. A.Sol–gel processing of electrical and magnetic ceramics. Mater. Chem. Phys., 38, 1994, 305–24.CrossRefGoogle Scholar
Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janaver, G. and Zavilij, P.The hydrothermal synthesis of new oxide materials. Solid State Ionics, 75, 1995, 257–68.CrossRefGoogle Scholar
Alber, K. S. and Cox, J. A.Electrochemistry in solids prepared by sol–gel processes. Mikrochim. Acta, 127, 1997, 131–47.CrossRefGoogle Scholar
Lev, O., Wu, Z., Bharathi, S., Glezer, V., Modestov, ., Gun, J., Rabinovich, L. and Sampath, S.Sol–gel materials in electrochemistry. Chem. Mater., 9, 1997, 2354–75.CrossRefGoogle Scholar
Therese, G. H. A. and Kamath, P. V.Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 12, 2000, 1195–204.CrossRefGoogle Scholar
Nishio, K. and Tsuchiya, T.Electrochromic thin films prepared by sol–gel process. Sol. Energy Mater. Sol. Cells, 68, 2001, 279–93.CrossRefGoogle Scholar
Chen, D.Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol. Energy Mater. Sol. Cells, 68, 2001, 313–36.CrossRefGoogle Scholar
Livage, J. and Ganguli, D.Sol–gel electrochromic coatings and devices: a review. Sol. Energy Mater. Sol. Cells, 68, 2001, 365–81.CrossRefGoogle Scholar
Klein, L. C. Electrochromic sol–gel coatings. In Schwartz, M. (ed.), Encyclopedia of Smart Materials, New York, Wiley, 2002, pp. 356–62.CrossRefGoogle Scholar
Valla, B., Tonazzi, J. C. L., Macêdo, M. A.et al. Transparent storage layers for H+ and Li+ ions prepared by sol–gel technique. Proc. SPIE, 1536, 1991, 48–62.CrossRefGoogle Scholar
Alquier, C., Vandenborre, M. T. and Henry, M.Synthesis of niobium pentoxide gels. J. Non-Cryst. Solids, 79, 1986, 383–95.CrossRefGoogle Scholar
Li, Y.-M. and Kudo, T.Properties of mixed-oxide MoO3/V2O5 electrochromic films coated from peroxo-polymolybdovanadate solutions. Sol. Energy Mater. Sol. Cells, 39, 1995, 179–90.CrossRefGoogle Scholar
Takano, S., Kishimoto, A., Hinokuma, K. and Kudo, T.Electrochromic thin films coated from peroxo-polymolybdotungstate solutions. Solid State Ionics, 70–1, 1994, 636–41.CrossRefGoogle Scholar
Svegl, F., Orel, B. and Kaucic, V.Electrochromic properties of lithiated Co-oxide (LixCoO2) and Ni-oxide (LixNiO2) thin films prepared by the sol–gel route. Sol. Energy, 68, 2000, 523–40.CrossRefGoogle Scholar
Pecquenard, B., Cacheux, H., Livage, J. and Julien, C.Orthorhombic WO3 formed via a Ti-stabilized WO3 | H2O phase. J. Solid State Chem., 135, 1998, 159–68.CrossRefGoogle Scholar
Wang, Z. and Hu, X.Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films, 352, 1999, 62–5.CrossRefGoogle Scholar
Livage, J. and Guzman, G.Aqueous precursors for electrochromic tungsten oxide hydrates. Solid State Ionics, 84, 1996, 205–11.CrossRefGoogle Scholar
Wang, H., Zhang, M., Yang, S., Zhao, L. and Ding, L.Preparation and properties of electrochromic tungsten oxide film. Sol. Energy Mater. Sol. Cells, 43, 1996, 345–52.CrossRefGoogle Scholar
Biswas, P. K., Pramanik, N. C., Mahapatra, M. K., Ganguli, D. and Livage, J.Optical and electrochromic properties of sol–gel WO3 films on conducting glass. Mater. Lett., 57, 2003, 4429–32.CrossRefGoogle Scholar
Hibino, M., Ugaji, M., Kishimoto, A. and Kudo, T.Preparation and lithium intercalation of a new vanadium oxide with a two-dimensional structure. Solid State Ionics, 79, 1995, 239–44.CrossRefGoogle Scholar
Wang, Z., Chen, J. and Hu, X.Electrochromic properties of aqueous sol–gel derived vanadium oxide films with different thickness. Thin Solid Films, 375, 2000, 238–41.CrossRefGoogle Scholar
Wang, Z. and Hu, X.Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid. Electrochim. Acta, 46, 2001, 1951–6.CrossRefGoogle Scholar
Patil, P. R., Pawar, S. H. and Patil, P. S.The electrochromic properties of tungsten oxide thin films deposited by solution thermolysis. Solid State Ionics, 136–137, 2000, 505–11.CrossRefGoogle Scholar
Patil, P. S., Patil, P. R., Kamble, S. S. and Pawar, S. H.Thickness-dependent electrochromic properties of solution thermolyzed tungsten oxide thin films. Sol. Energy Mater. Sol. Cells, 60, 2000, 143–53.CrossRefGoogle Scholar
El Idrissi, B., Addou, M., Outzourhit, A., Regragui, M., Bougrine, A. and Kachouane, A.Sprayed CeO2 thin films for electrochromic applications. Sol. Energy Mater. Sol. Cells, 69, 2000, 1–8.CrossRefGoogle Scholar
Patil, P. S., Kadam, L. D. and Lokhande, C. D.Studies on electrochromism of spray pyrolyzed cobalt oxide thin films. Sol. Energy Mater. Sol. Cells, 53, 1998, 229–34.CrossRefGoogle Scholar
Kadam, L. D., Pawar, S. H. and Patil, P. S.Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique. Mater. Chem. Phys., 68, 2001, 280–2.CrossRefGoogle Scholar
Gomez, M., Medina, A. and Estrada, W.Improved electrochromic films of NiOx and WOxPy obtained by spray pyrolysis. Sol. Energy Mater. Sol. Cells, 64, 2000, 297–309.CrossRefGoogle Scholar
Kamal, H., Elmaghraby, E. K., Ali, S. A. and Abdel-Hady, K.Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis. J. Crystal Growth, 262, 2004, 424–34.CrossRefGoogle Scholar
Wang, S.-Y., Wang, W., Wang, W.-Z. and Du, Y.-W.Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Mater. Sci. Eng. B, 90, 2002, 133–7.CrossRefGoogle Scholar
Regragui, M., Addou, M., Outzourhit, A., Bernede, J. C., El Idrissi, E., Benseddik, E. and Kachouane, A.Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films, 358, 2000, 40–5.CrossRefGoogle Scholar
Regragui, M., Addou, M., Outzourhit, A.El Idrissi, E., Kachouane, A. and Bougrine, A.Electrochromic effect in WO3 thin films prepared by spray pyrolysis. Sol. Energy Mater. Sol. Cells, 77, 2003, 341–50.CrossRefGoogle Scholar
Sivakumar, R., Raj, Moses Ezhil A., Subramanian, B., Jayachandran, M., Trivedi, D. C. and Sanjeeviraja, C.Preparation and characterization of spray deposited n-type WO3 thin films for electrochromic devices. Mater. Res. Bull., 39, 2004, 1479–89.CrossRefGoogle Scholar
Zhang, J., Wessel, S. A. and Colbow, K.Spray pyrolysis elecrochromic WO3 films: electrical and X-ray diffraction measurements. Thin Solid Films, 185, 1990, 265–77.CrossRefGoogle Scholar
Štangar, L. U., Orel, B., Grabec, I., Ogorevc, B. and Kalcher, K.Optical and electrochemical properties of CeO2 and CeO2–TiO2 coatings. Sol. Energy Mater. Sol. Cells, 31, 1993, 171–85.Google Scholar
Cerc Korošec, R. and Bukovec, P.The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method: part II. Thermochim. Acta, 410, 2004, 65–71.CrossRefGoogle Scholar
Garcia-Miquel, J. L., Zhang, Q., Allen, S. J., Rougier, A., Blyr, A., Davies, H. O., Jones, A. C., Leedhan, T. J., Williams, P. A. and Impey, S. A.Nickel oxide sol–gel films from nickel diacetate for electrochromic applications. Thin Solid Films, 424, 2003, 165–70.CrossRefGoogle Scholar
Martini, M., Brito, G. E. S., Fantini, M. C. A., Craievich, A. F. and Gorenstein, A.Electrochromic properties of NiO-based thin films prepared by sol–gel and dip coating. Electrochim. Acta, 46, 2001, 2275–9.CrossRefGoogle Scholar
Sharma, P. K., Fantini, M. C. A. and Gorenstein, A.Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method. Solid State Ionics, 113–15, 1998, 457–63.CrossRefGoogle Scholar
Šurca, A., Orel, B., Pihlar, B. and Bukovec, P.Optical, spectroelectrochemical and structural properties of sol–gel derived Ni-oxide electrochromic film. J. Electroanal. Chem., 408, 1996, 83–100.CrossRefGoogle Scholar
Nishio, K., Watanabe, Y. and Tsuchiya, T.Preparation and properties of electrochromic iridium oxide thin film by sol–gel process. Thin Solid Films, 350, 1999, 96–100.CrossRefGoogle Scholar
Orel, B., Maček, M., Švegl, F. and Kalcher, K.Electrochromism of iron oxide films prepared via the sol–gel route by the dip-coating technique. Thin Solid Films, 246, 1994, 131–42.CrossRefGoogle Scholar
Avellaneda, C. O., Aegerter, M. A. and Pawlicka, A.[Caracterização de filmes finos de Nb2O5 com propriedades eletrocrômicas Characterisation and electrochromic properties of films of Nb2O5], Quim. Nova, 21, 1998, 365–7.CrossRefGoogle Scholar
Avellaneda, C. O., Bulhões, L. O. S. and Pawlicka, A.The CeO2–TiO2–ZrO2 sol–gel film: a counter-electrode for electrochromic devices. Thin Solid Films, 84, 2004, 337–50.Google Scholar
Avellaneda, C. O. and Pawlicka, A.Preparation of transparent CeO2–TiO2 coatings for electrochromic devices. Thin Solid Films, 335, 1998, 245–8.CrossRefGoogle Scholar
Baudry, P., Rodrigues, A. C. M., Aegerter, M. A. and Bulhões, L. O.Dip-coated TiO2–CeO2 films as transparent counter-electrode for transmissive electrochromic devices. J. Non-Cryst. Solids, 121, 1990, 319–22.CrossRefGoogle Scholar
Benčič, S., Orel, B., Surca, A. and Stangar, U. L.Structural and electrochromic properties of nanosized Fe/V-oxide films with FeVO4 and Fe2V4O13 grains: comparative studies with crystalline V2O5. Sol. Energy, 68, 2000, 499–515.CrossRefGoogle Scholar
Berton, M. A. C., Avellaneda, C. O. and Bulhões, L. O. S.Thin film of CeO2–SiO2: a new ion storage layer for smart windows. Sol. Energy Mater. Sol. Cells, 80, 2003, 443–9.CrossRefGoogle Scholar
Ferreira, F. F., Haddad, P. S., Fantini, M. C. A. and Brito, G. E. S.Composite Au–NiO films. Solid State Ionics, 165, 2003, 161–8.CrossRefGoogle Scholar
Ghodsi, F. E., Tepehan, F. Z. and Tepehan, G. G.Optical and electrochromic properties of sol–gel made CeO2–TiO2 thin films. Electrochim. Acta, 44, 1999, 3127–36.CrossRefGoogle Scholar
Orel, B., Lavrencic-Štangar, U., Hutchins, M. G. and Kalcher, K.Mixed phosphotungstic acid/titanium oxide gels and thin solid xerogel films with electrochromic-ionic conductive properties. J. Non-Cryst. Solids, 175, 1994, 251–62.CrossRefGoogle Scholar
Özer, N., Sabuncu, S. and Cronin, J.Electrochromic properties of sol–gel deposited Ti-doped vanadium oxide film. Thin Solid Films, 338, 1999, 201–6.CrossRefGoogle Scholar
Schmitt, M. and Aegerter, M. A.Electrochromic properties of Nb2O5 and Nb2O5:X sol–gel coatings (X = Sn, Zr, Li, Ti, Mo). Proc. SPIE, 3788, 1999, 93–102.CrossRefGoogle Scholar
Šurca, A., Benčič, S., Orel, B. and Pihlar, B.Spectroelectrochemical studies of V/Ti-, V/Ti/Zr- and V/Ti/Ce-oxide counter-electrode films. Electrochim. Acta, 44, 1999, 3075–84.CrossRefGoogle Scholar
Šurca, A., Orel, B., Cerc-Korosec, R., Bukovec, P. and Pihlar, B.Structural and electrochromic properties of sol–gel derived Ni(Si)-oxide films, J. Electroanal. Chem., 433, 1997, 57–72.CrossRefGoogle Scholar
Avellaneda, C. O., Pawlicka, A. and Aegerter, M. A.Two methods of obtaining sol–gel Nb2O5 thin films for electrochromic devices. J. Mater. Sci., 33, 1998, 2181–5.CrossRefGoogle Scholar
Özer, N., Rubin, M. D. and Lampert, C. M.Optical and electrochemical characteristics of niobium oxide films prepared by sol–gel process and magnetron sputtering: a comparison. Sol. Energy Mater. Sol. Cells, 40, 1996, 285–96.CrossRefGoogle Scholar
Pawlicka, A., Atik, M. and Aegerter, M. A.Synthesis of multicolor Nb2O5 coatings for electrochromic devices. Thin Solid Films, 301, 1997, 236–241.CrossRefGoogle Scholar
Schmitt, M. and Aegerter, M. A.Electrochromic properties of pure and doped Nb2O5 coatings and devices. Electrochim. Acta, 46, 2001, 2105–11.CrossRefGoogle Scholar
Schmitt, M., Heusing, S., Aegerter, M. A., Pawlicka, A. and Avellaneda, C.Electrochromic properties of Nb2O5 sol–gel coatings. Sol. Energy Mater. Sol. Cells, 54, 1998, 9–17.CrossRefGoogle Scholar
Tepehan, Z., Ghodsi, F., Ferhad, E. F., Ozer, N. and Tepehan, G. G.Optical properties of sol–gel dip-coated Ta2O5 films for electrochromic applications. Sol. Energy Mater. Sol. Cells, 59, 1999, 265–75.CrossRefGoogle Scholar
Bell, J. M., Barczynska, J., Evans, L. A., MacDonald, K. A., Wang, J., Green, D. C. and Smith, G. B.Electrochromism in sol–gel deposited TiO2 films. Proc. SPIE, 2255, 1994, 324–31.CrossRefGoogle Scholar
Badilescu, S. and Ashrit, P. V.Study of sol–gel prepared nanostructured WO3 thin films and composites for electrochromic applications. Solid State Ionics, 158, 2003, 187–97.CrossRefGoogle Scholar
Bessière, A., Badot, J.-C., Certiat, M.-C., Livage, J., Lucas, V. and Baffier, N.Sol–gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim. Acta, 46, 2001, 2251–6.CrossRefGoogle Scholar
Lee, Dong K.Preparation and electrochromic properties of WO3 coating deposited by the sol–gel method. Sol. Energy Mater. Sol. Cells, 57, 1999, 21–30.Google Scholar
Krašovec, Opara U., Orel, B., Georg, A. and Wittwer, V.The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst. Sol. Energy, 68, 2000, 541–51.CrossRefGoogle Scholar
Krašovec, Opara U., Surca, A. V. and Orel, B.IR spectroscopic studies of charged–discharged crystalline WO3 films. Electrochim. Acta, 46, 2001, 1921–9.CrossRefGoogle Scholar
Patra, A., Auddy, K., Ganguli, D., Livage, J. and Biswas, P. K.Sol–gel electrochromic WO3 coatings on glass. Mater. Lett., 58, 2004, 1059–63.CrossRefGoogle Scholar
Wang, J., Bell, J. M. and Skryabin, I. L.Kinetics of charge injection in sol–gel deposited WO3. Sol. Energy Mater. Sol. Cells, 56, 1999, 465–75.CrossRefGoogle Scholar
Šurca, A. and Orel, B.IR spectroscopy of crystalline V2O5 films in different stages of lithiation. Electrochim. Acta, 44, 1999, 3051–7.CrossRefGoogle Scholar
Djaoued, Y., Phong, V. H., Badilescu, S., Ashrit, P. V., Girouard, F. E. and Truong, V.-V.Sol–gel-prepared ITO films for electrochromic systems. Thin Solid Films, 293, 1997, 108–12.CrossRefGoogle Scholar
Özer, N.Optical properties and electrochromic characterization of sol–gel deposited ceria films. Sol. Energy Mater. Sol. Cells, 68, 2001, 391–400.CrossRefGoogle Scholar
Özer, N., Chen, D.-G. and Buyuklimanli, T.Electrochromic characterization of Co(OH) 2 thin film prepared by sol–gel process. Sol. Energy Mater. Sol. Cells, 52, 1998, 223–30.CrossRefGoogle Scholar
Ederth, J., Heszler, P., Hultåker, A., Niklasson, G. A. and Granqvist, C. G.Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films, 445, 2003, 199–206.CrossRefGoogle Scholar
Ederth, J., Hultåker, A., Heszler, P., Niklasson, G. A., Granqvist, C. G., Doorn, A. K., Haag, C., Jongerius, M. J. and Burgard, D.Electrical and optical properties of thin films prepared by spin coating a dispersion of nano-sized tin-doped indium-oxide particles. Proc. SPIE, 4590, 2001, 280–5.CrossRefGoogle Scholar
Özer, N., Tepehan, F. and Tepehan, G.Preparation and optical properties of sol gel deposited electrochromic iron oxide films. Proc. SPIE, 3138, 1997, 31–9.CrossRefGoogle Scholar
Hinokuma, K., Ogasawara, K., Kishimoto, A., Takano, S. and Kudo, T.Electrochromism of spin-coated MoO3. nH2O thin films from peroxo-polymolybdate. Solid State Ionics, 53–6, 1992, 507–12.CrossRefGoogle Scholar
Yanovskaya, M. I., Obvintseva, I. E., Kessler, V. G., Galyamov, B. S., Kucheiko, S. I., Shifrina, R. R. and Turova, N. Y.Hydrolysis of molybdenum and tungsten alkoxides: sols, powders and films. J. Non-Cryst. Solids, 124, 1990, 155–66.CrossRefGoogle Scholar
Özer, N., Chen, D.-G. and Lampert, C. M.Preparation and properties of spin-coated Nb2O5 films by the sol–gel process for electrochromic applications. Thin Solid Films, 277, 1996, 162–8.CrossRefGoogle Scholar
Özer, N., Rubin, M. D. and Lampert, C. M.Optical and electrochemical characteristics of niobium oxide films prepared by sol–gel process and magnetron sputtering: a comparison. Sol. Energy Mater. Sol. Cells, 40, 1996, 285–96.CrossRefGoogle Scholar
Sone, Y., Kishimoto, A. and Kudo, T.Proton conductivity of spin-coated Ta2O5. nH2O amorphous thin films from peroxo-polytantalate solution. Solid State Ionics, 66, 1993, 53–9.CrossRefGoogle Scholar
Krings, L. H. M. and Talen, W.Wet chemical preparation and characterization of electrochromic WO3. Sol. Energy Mater. Sol. Cells, 54, 1998, 27–37.CrossRefGoogle Scholar
Li, Y., Aikawa, Y., Kishimoto, A. and Kudo, T.Coloration dynamics of tungsten oxide based all solid state electrochromic device. Electrochim. Acta, 39, 1994, 807–12.CrossRefGoogle Scholar
Özer, N.Optical and electrochemical characteristics of sol–gel deposited tungsten oxide films: a comparison. Thin Solid Films, 304, 1997, 310–14.CrossRefGoogle Scholar
Özkan, E., Lee, S.-H., Liu, P., Tracy, C. E., Tepehan, F. Z., Pitts, J. R. and Deb, S. K.Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ionics, 149, 2002, 139–46.CrossRefGoogle Scholar
Sharma, N., Deepa, M., Varshney, P. and Agnihotry, S. A.FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors. Thin Solid Films, 401, 2001, 45–51.CrossRefGoogle Scholar
Özer, N.Electrochemical properties of sol–gel deposited vanadium pentoxide films. Thin Solid Films, 305, 1997, 80–7.CrossRefGoogle Scholar
Passerini, S., Tipton, A. L. and Smyrl, W. H.Spin coated V2O5 XRG [xerogel] as optically passive electrode in laminated electrochromic devices. Sol. Energy Mater. Sol. Cells, 39, 1995, 167–77.CrossRefGoogle Scholar
He, T., Ma, Y., Cao, Y., Yang, W. and Yao, J.Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem., 514, 2001, 129–32.CrossRefGoogle Scholar
Li, Y.-M. and Kudo, T.Lithium intercalation dynamics of spin-coated amorphous Mo0.5V0.5O2.75 thin film. Solid State Ionics, 86–8, 1996, 1295–9.CrossRefGoogle Scholar
Özer, N. and Dogan, N.Study of electrochromism in Ti:WO3 films by sol–gel process. Proc. SPIE, 3424, 1998, 106–14.CrossRefGoogle Scholar
Özer, N. and Lampert, C. M.Electrochromic performance of sol–gel deposited WO3–V2O5 films. Thin Solid Films, 349, 1999, 205–11.CrossRefGoogle Scholar
Verma, A., Samanta, S. B., Bakhshi, A. K. and Agnihotry, S. A.Optimization of CeO2–TiO2 composition for fast switching kinetics and improved Li ion storage capacity. Solid State Ionics, 171, 2004, 81–90.CrossRefGoogle Scholar
Cogan, S. F., Plante, T. D., Anderson, E. J. and Rauh, R. D.Materials and devices in electrochromic window development, Proc. SPIE, 562, 1985, 23–31.CrossRefGoogle Scholar
Azens, A., Kullman, L., Ragan, D. D. and Granqvist, C. G.Optically passive counter electrodes for electrochromic devices: transition metal–cerium oxide thin films. Sol. Energy Mater. Sol. Cells, 54, 1998, 85–91.CrossRefGoogle Scholar
Teixeira, V., Cui, H. N., Meng, L. J., Fortunato, E. and Martins, R.Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films, 420–1, 2002, 70–5.CrossRefGoogle Scholar
Kharrazi, M., Kullman, L. and Granqvist, C. G.High-rate dual-target DC magnetron sputter deposition of ‘blue’ electrochromic Mo oxide films. Sol. Energy Mater. Sol. Cells, 53, 1998, 349–56.CrossRefGoogle Scholar
Estrada, W., Andersson, A. M. and Granqvist, C. G.Electrochromic nickel-oxide-based coatings made by reactive dc magnetron sputtering: preparation and optical properties. J. Appl. Phys., 64, 1988, 3678–83.CrossRefGoogle Scholar
Xu, Y. Z., Qiu, M. Q., Qiu, S. C., Dai, J., Cao, G. J., He, H. H. and Wang, J. Y.Electrochromism of NiOxHy films grown by DC sputtering. Sol. Energy Mater. Sol. Cells, 45, 1997, 105–13.CrossRefGoogle Scholar
Ragan, D. D., Svedlindh, P. and Granqvist, C. G.Electrochromic Ni oxide films studied by magnetic measurements. Sol. Energy Mater. Sol. Cells, 54, 1998, 247–54.CrossRefGoogle Scholar
Yueyan, S., Zhiyang, Z. and Xiaoji, Y.Electrochromic properties of NiOxHy thin films. Sol. Energy Mater. Sol. Cells, 71, 2002, 51–9.CrossRefGoogle Scholar
Xuping, Z. and Guoping, C.The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures. Thin Solid Films, 298, 1997, 53–6.CrossRefGoogle Scholar
Yoshimura, K., Miki, T. and Tanemura, S.Cross-sectional observations by HRTEM of the structure of nickel oxide electrochromic thin films in the as-deposited state and the bleached state. Mater. Res. Bull., 32, 1997, 839–45.CrossRefGoogle Scholar
Estrada, W., Andersson, A. M., Granqvist, C. G., Gorenstein, A. and Decker, F.Infrared spectroscopy of electrochromic NiOxHy films made by reactive dc sputtering. J. Mater. Res., 6, 1991, 1715–19.CrossRefGoogle Scholar
Yoshimura, K., Miki, T., Tanemura, S. and Iwama, S.Characterization of niobium oxide electrochromic thin films prepared by reactive d.c. magnetron sputtering. Thin Solid Films, 281–2, 1996, 235–8.CrossRefGoogle Scholar
Huang, Y., Zhang, Y. and Hu, X.Structural, morphological and electrochromic properties of Nb2O5 films deposited by reactive sputtering. Sol. Energy Mater. Sol. Cells, 77, 2003, 155–62.CrossRefGoogle Scholar
Kullman, L., Azens, A. and Granqvist, C. G.Electrochromic praseodymium oxide films. Proc. SPIE, 3138, 1997, 2–8.CrossRefGoogle Scholar
Al-Jumaily, G. A. and Edlou, S. M.Optical properties of tantalum pentoxide coatings deposited using ion beam processes. Thin Solid Films, 209, 1992, 223–9.CrossRefGoogle Scholar
Berggren, L., Ederth, J. and Niklasson, G. A.Electrical conductivity as a function of temperature in amorphous lithium tungsten oxide. Sol. Energy Mater. Sol. Cells, 84, 2005, 329–36.CrossRefGoogle Scholar
Salinga, C., Weis, H. and Wuttig, M.Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics. Thin Solid Films, 414, 2002, 288–95.CrossRefGoogle Scholar
Wruck, D., Ramamurthi, S. and Rubin, M.Sputtered electrochromic V2O5 films. Thin Solid Films, 182, 1989, 79–86.CrossRefGoogle Scholar
Talledo, A., Andersson, A. M. and Granqvist, C. G.Structure and optical absorption of LiyV2O5 thin films. J. Appl. Phys., 69, 1991, 3261–5.CrossRefGoogle Scholar
Scarminio, J., Talledo, A., Andersson, A. A., Passerini, S. and Decker, F.Stress and electrochromism induced by Li insertion in crystalline and amorphous V2O5 thin film electrodes. Electrochim. Acta, 38, 1993, 1637–42.CrossRefGoogle Scholar
Talledo, A., Andersson, A. M. and Granqvist, C. G.Electrochemically lithiated V2O5 films: an optically passive ion storage layer for transparent electrochromic devices. J. Mater. Res., 5, 1990, 1253–6.CrossRefGoogle Scholar
Hamberg, I. and Granqvist, C. G.Dielectric function of ‘undoped’ In2O3. Thin Solid Films, 105, 1983, L83–6.CrossRefGoogle Scholar
Hamberg, I. and Granqvist, C. G.Optical properties of transparent and heat-reflecting indium-tin-oxide films: experimental data and theoretical analysis. Sol. Energy Mater., 11, 1984, 239–48.CrossRefGoogle Scholar
Hamberg, I., Granqvist, C., Berggren, K.-F., Sernelius, B. and Engstrom, L.Optical properties of transparent and infra-red-reflecting ITO films in the 0.2–50μm range. Vacuum, 35, 1985, 207–9.CrossRefGoogle Scholar
Hjortsberg, A., Hamberg, I. and Granqvist, C. G.Transparent and heat-reflecting indium tin oxide films prepared by reactive electron beam evaporation. Thin Solid Films, 90, 1982, 323–6.CrossRefGoogle Scholar
Seike, T. and Nagai, J.Electrochromism of 3d transition metal oxides. Sol. Energy Mater., 22, 1991, 107–17.CrossRefGoogle Scholar
Yahaya, M., Salleh, M. M. and Talib, I. A.Optical properties of MoO3 thin films for electrochromic windows. Solid State Ionics, 113–15, 1998, 421–3.CrossRefGoogle Scholar
Ramana, C. V., Hussain, O. M., Naidu, B. S., Julien, C. and Balkanski, M.Physical investigations on electron-beam evaporated vanadium pentoxide films. Mater. Sci. Eng. B., 52, 1998, 32–9.CrossRefGoogle Scholar
Pauporté, T., Aberdam, D., Hazemann, J.-L., Faure, R. and Durand, R.X-Ray absorption in relation to valency of iridium in sputtered iridium oxide films. J. Electroanal. Chem., 465, 1999, 88–95.CrossRefGoogle Scholar
Pauporté, T. and Durand, R.Impedance spectroscopy study of electrochromism in sputtered iridium oxide films. J. Appl. Electrochem., 30, 2000, 35–41.CrossRefGoogle Scholar
Wei, G., Haas, T. E. and Goldner, R. B.Thin films of lithium cobalt oxide. Solid State Ionics, 58, 1992, 115–22.CrossRefGoogle Scholar
Wei, G., Goldner, R. B. and Haas, T. E.Lithium cobalt oxide and its electrochromism. Proc. Electrochem. Soc., 90–2, 1990, 80–9.Google Scholar
Goldner, R. B., Arntz, F. O., Berera, G., Haas, T. E., Wei, G., Wong, K. K. and Yu, P. C.A monolithic thin-film electrochromic window. Solid State Ionics, 53–6, 1992, 617–27.CrossRefGoogle Scholar
Nishio, K., Sei, T. and Tsuchiya, T.Preparation and properties of fully solid state electrochromic-display thin film from a sol–gel process. Proc. SPIE, 3136, 1997, 419–25.CrossRefGoogle Scholar
Wang, Z. and Hu, X.Structural and electrochemical characterization of ‘open-structured’ ITO films. Thin Solid Films, 392, 2001, 22–8.CrossRefGoogle Scholar
Goldner, R. B., Foley, G., Goldner, E. L., Norton, P., Wong, K., Haas, T., Seward, G. and Chapman, R.Electrochromic behaviour in ITO and related oxides. Appl. Opt. 24, 1985, 2283–4.CrossRefGoogle Scholar
Goldner, R. B., Seward, G., Wong, K., Haas, T., Foley, G. H., Chapman, R. and Schulz, S.Completely solid lithiated smart windows. Sol. Energy Mater., 19, 1989, 17–26.CrossRefGoogle Scholar
Benkhelifa, F., Ashrit, P. V., Bader, G., Girouard, F. E. and Truong, V.-V.Near room temperature deposited indium tin oxide films as transparent conductors and counterelectrodes in electrochromic systems. Thin Solid Films, 232, 1993, 83–6.CrossRefGoogle Scholar
Golden, S. J. and Steele, B. C. H.Characterisation of I. T. O. thin film electrodes in Li-based systems and their use in electrochromic windows. Mater. Res. Soc. Symp. Proc., 293, 1993, 395–400.CrossRefGoogle Scholar
Golden, S. J. and Steele, B. C. H.Thin-film tin-doped indium oxide counter electrode for electrochromic applications. Solid State Ionics, 28–30, 1988, 1733–7.CrossRefGoogle Scholar
Kanoh, H., Hirotsu, T. and Ooh, K.Electrochromic behavior of a λ-MnO2 electrode accompanying Li+-insertion in an aqueous phase. J. Electrochem. Soc., 143, 1996, 905–8.CrossRefGoogle Scholar
Besenhard, J. O.Handbook of Battery Materials, Chichester, Wiley, 1998CrossRefGoogle Scholar
Cantao, M. P., Laurenco, A., Gorenstein, A., Córdoba de Torresi, S. I. and Torresi, R. M.Inorganic oxide solid state electrochromic devices. Mater. Sci. Eng. B, 26, 1994, 157–61.CrossRefGoogle Scholar
Song, X. Y., He, Y. X., Lampert, C. M., Hu, X. F. and Chen, X. F.Cross-sectional high-resolution transmission electron microscopy of the microstructure of electrochromic nickel oxide. Sol. Energy Mater. Sol. Cells, 63, 2000, 227–35.CrossRefGoogle Scholar
Chen, X., Hu, X. and Feng, J.Nanostructured nickel oxide films and their electrochromic properties. Nanostruct. Mater., 6, 1995, 309–12.CrossRefGoogle Scholar
Jiang, S. R., Feng, B. X., Yan, P. X., Cai, X. M. and Lu, S. Y.The effect of annealing on the electrochromic properties of microcrystalline NiOx films prepared by reactive magnetron rf sputtering. Appl. Surf. Sci., 174, 2001, 125–31.CrossRefGoogle Scholar
Michalak, F., Rottkay, K., Richardson, T., Slack, J. and Rubin, M.Electrochromic lithium nickel oxide thin films by RF-sputtering from a LiNiO2 target. Electrochim. Acta, 44, 1999, 3085–92.CrossRefGoogle Scholar
Svensson, J. S. E. M. and Granqvist, C. G.Electrochromism of nickel-based sputtered coatings. Sol. Energy Mater., 16, 1987, 19–26.CrossRefGoogle Scholar
Lechner, R. and Thomas, L. K.All solid state electrochromic devices on glass and polymeric foils. Sol. Energy Mater. Sol. Cells, 54, 1998, 139–46.CrossRefGoogle Scholar
Jiang, S. R., Yan, P. X., Feng, B. X., Cai, X. M. and Wang, J.The response of a NiOx thin film to a step potential and its electrochromic mechanism. Mater. Chem. Phys., 77, 2003, 384–9.CrossRefGoogle Scholar
Ferreira, F. F., Tabacniks, M. H., Fantini, M. C. A., Faria, I. C. and Gorenstein, A.Electrochromic nickel oxide thin films deposited under different sputtering conditions. Solid State Ionics, 86–8, 1996, 971–6.CrossRefGoogle Scholar
Corbella, C., Vives, M., Pinyol, A., Porqueras, I., Person, C. and Bertran, E.Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics, 165, 2003, 15–22.CrossRefGoogle Scholar
Cogan, S. F., Anderson, E. J., Plante, T. D. and Rauh, R. D.Materials and devices in electrochromic window development. Proc. SPIE, 562, 1985, 23–31.CrossRefGoogle Scholar
Kitao, M., Akram, H., Machida, H. and Urabe, K.Ta2O5 electrolyte films and solid-state EC cells. Proc. SPIE, 1728, 1992, 165–72.CrossRefGoogle Scholar
Kitao, M., Akram, H., Urabe, K. and Yamada, S.Properties of solid-state electrochromic cells using Ta2O5 electrolyte. J. Electron. Mater., 21, 1992, 419–22.CrossRefGoogle Scholar
Kitao, M., Oshima, Y. and Urabe, K.Preparation and electrochromism of RF-sputtered TiO2 films. Jpn. J. Appl. Phys., 36, 1997, 4423–6.CrossRefGoogle Scholar
Paul, J.-L. and Lassegues, J.-C.Infrared spectroscopic study of sputtered tungsten oxide films. J. Solid State Chem., 106, 1993, 357–71.CrossRefGoogle Scholar
Cogan, S. F., Nguyen, N. M., Perrotti, S. J. and Rauh, R. D.Optical properties of electrochromic vanadium pentoxide. J. Appl. Phys., 66, 1989, 1333–7.CrossRefGoogle Scholar
Cogan, S. F., Nguyen, N. M., Perrotti, S. J. and Rauh, R. D.Electrochromism in sputtered vanadium pentoxide. Proc. SPIE, 1016, 1988, 57–62.CrossRefGoogle Scholar
Cogan, S. F., Rauh, R. D., Plante, T. D., Nguyen, N. M. and Westwood, J. D.Morphology and electrochromic properties of V2O5 films. Proc. Electrochem. Soc., 90–2, 1990, 99–111.Google Scholar
Rauh, R. D. and Cogan, S. F.Counter electrodes in transmissive electrochromic light modulators. Solid State Ionics, 28–30, 1988, 1707–14.CrossRefGoogle Scholar
Hansen, S. D. and Aita, C. R.Low temperature reactive sputter deposition of vanadium oxide. J. Vac. Sci. Technol., A, 3, 1985, 660–3.CrossRefGoogle Scholar
Wijs, G. A. and Groot, R. A.Amorphous WO3: a first-principles approach. Electrochim. Acta, 46, 2001, 1989–93.CrossRefGoogle Scholar
Ai-Kuhaili, M. F., Khawaja, E. E., Ingram, D. C. and Durrani, S. M. A.A study of thin films of V2O5 containing molybdenum from an evaporation boat. Thin Solid Films, 460, 2004, 30–5.CrossRefGoogle Scholar
Deb, S. K.Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag., 27, 1973, 801–22.CrossRefGoogle Scholar
Bohnke, C. and Bohnke, O.Heat treatment of amorphous electrochromic WO3 thin films deposited onto indium-tin oxide substrates. J. Appl. Electrochem., 18, 1988, 715–23.CrossRefGoogle Scholar
Gérard, P., Deneuville, A., Hollinger, G. and Duc, T. M.Color in ‘tungsten trioxide’ thin films. J. Appl. Phys., 48, 1977, 4252–5.CrossRefGoogle Scholar
Arnoldussen, T. C.Electrochromism and photochromism in MoO3 films. J. Electrochem. Soc., 123, 1976, 527–31.CrossRefGoogle Scholar
Miyata, N., Suzuki, T. and Ohyama, R.Physical properties of evaporated molybdenum oxide films. Thin Solid Films, 281–2, 1996, 218–22.CrossRefGoogle Scholar
Sian, T. S. and Reddy, G. B.Optical structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Sol. Energy Mater. Sol. Cells, 82, 2004, 375–86.CrossRefGoogle Scholar
Colton, R. J., Guzman, A. M. and Rabalais, J. W.Electrochromism in some thin-film transition-metal oxides characterised by X-ray electron spectroscopy. J. Appl. Phys., 49, 1978, 409–16.CrossRefGoogle Scholar
Monk, P. M. S., Duffy, J. A. and Ingram, M. D.Electrochromic display devices of tungstic oxide containing vanadium oxide or cadmium sulphide as a light-sensitive layer. Electrochim. Acta, 38, 1993, 2759–64.CrossRefGoogle Scholar
Monk, P. M. S., Duffy, J. A. and Ingram, M. D.Pulsed enhancement of the rate of coloration for tungsten trioxide based electrochromic devices. Electrochim. Acta, 43, 1998, 2349–57.CrossRefGoogle Scholar
Schlotter, P. and Pickelmann, L.Xerogel structure of thermally evaporated tungsten oxide layers. J. Electron. Mater., 11, 1982, 207–36.CrossRefGoogle Scholar
Holland, L.Vacuum Deposition of Thin Films, London, Chapman Hall, 1956Google Scholar
Goldenberg, L. M.Electrochemical properties of Langmuir–Blodgett films. J. Electroanal. Chem., 379, 1994, 3–19.CrossRefGoogle Scholar
Granqvist, C. G. Electrochromic tungsten-oxide based thin films: physics, chemistry and technology. In Francombe, M. H. and Vossen, J. L. (eds.), Physics of Thin Films, New York, Academic, 1993, pp. 301–70.Google Scholar
Granqvist, C. G.Progress in electrochromics: tungsten oxide revisited. Electrochim. Acta, 44, 1999, 3005–15.CrossRefGoogle Scholar
Azens, A., Bellac, D., Granqvist, C. G., Barczynska, J., Pentjuss, E., Gabrusenoks, J. and Wills, J. M.Electrochromism of W-oxide-based thin films: recent advances. Proc. Electrochem. Soc., 95–22, 1995, 102–24.Google Scholar
Monk, P. M. S.Charge movement through electrochromic thin-film tungsten trioxide. Crit. Rev. Solid State Mater. Sci., 24, 1999, 193–226.CrossRefGoogle Scholar
Bange, K.Colouration of tungsten oxide films: a model for optically active coatings. Sol. Energy Mater. Sol. Cells, 58, 1999, 1–131.CrossRefGoogle Scholar
Wiseman, P. J. and Dickens, P. G.The crystal structure of cubic hydrogen tungsten bronze. J. Solid State Chem., 6, 1973, 374–7.CrossRefGoogle Scholar
Azens, A., Hjelm, A., Bellac, D., Granqvist, C. G., Barczynska, J., Pentuss, E., Gabrusenoks, J. and Wills, J. M.Electrochromism of W-oxide-based thin films: recent advances. Solid State Ionics, 86–8, 1996, 943–8.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic oxides: a bandstructure approach. Sol. Energy Mater. Sol. Cells, 32, 1994, 369–82.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic materials: metal oxide nanocomposites with variable optical properties. Mater. Sci. Eng. A, 168, 1993, 209–15.CrossRefGoogle Scholar
Khatko, V., Guirado, F., Hubalek, J., Llobet, E. and Correig, Z.X-Ray investigation of nanopowder WO3 thick films. Physica Status Solidi, 202, 2005, 1973–9.CrossRefGoogle Scholar
Kitao, M. and Yamada, S. Electrochromic properties of transition metal oxides and their complementary cells. In Chowdari, B. V. R. and Radharkrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Scientific Publishing Co., 1988, pp. 359–78.CrossRefGoogle Scholar
Yoshiike, N. and Kondo, S.Electrochemical properties of WO3. x(H2O), II: the influence of crystallization as hydration. J. Electrochem. Soc., 131, 1984, 809–13.CrossRefGoogle Scholar
Özkan, E., Lee, S. H., Tracy, C. E., Pitts, J. R. and Deb, S. K.Comparison of electrochromic amorphous and crystalline tungsten oxide films. Sol. Energy Mater. Sol. Cells, 79, 2003, 439–48.CrossRefGoogle Scholar
Antonaia, A., Polichetti, T., Addonizio, M. L., Aprea, S., Minarini, C. and Rubino, A.Structural and optical characterization of amorphous and crystalline evaporated WO3 layers. Thin Solid Films, 354, 1999, 73–81.CrossRefGoogle Scholar
Sun, S.-S. and Holloway, P. H.Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling. J. Vac. Sci. Technol., A, 1, 1983, 529–33.CrossRefGoogle Scholar
Sun, S.-S. and Holloway, P. H.Modification of the electrochromic response of WO3 thin films by oxygen backfilling. J. Vac. Sci. Technol., A, 2, 1984, 336–40.CrossRefGoogle Scholar
Gordon, R. G., Barry, S., Barton, J. T. and Broomhall-Dillard, R. N. R.Atmospheric pressure chemical vapor deposition of electrochromic tungsten oxide films. Thin Solid Films, 392, 2001, 231–5.CrossRefGoogle Scholar
Gordon, R. G., Barry, S., Broomhill-Dillard, R. N. R., Wagner, V. A. and Wang, Y.Volatile liquid precursors for the chemical vapor deposition (CVD) of thin films containing tungsten. Mater. Res. Soc. Symp. Proc., 612, 2000, D9121–6.CrossRefGoogle Scholar
Meda, L., Breitkopf, R. C., Haas, T. E. and Kirss, R. U.Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films, 402, 2002, 126–30.CrossRefGoogle Scholar
Green, M., Smith, D. C. and Weiner, J. A.A thin film electrochromic display based on the tungsten bronzes. Thin Solid Films, 38, 1976, 89–100.CrossRefGoogle Scholar
Goldner, R. B., Norton, P., Wong, G., Foley, E. L. and Seward, G. R. C.Further evidence for free electrons as dominating the behaviour of electrochromic polycrystalline WO3 films. Appl. Phys. Lett., 47, 1985, 536–8.CrossRefGoogle Scholar
Barna, G. G.Material and device properties of a solid state electrochromic device. J. Electron. Mater., 8, 1979, 153–73.CrossRefGoogle Scholar
Akl, A. A., Kamal, H. and Abdel-Hady, K.Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering. Physica B: Condensed Matter, 325, 2003, 65–75.CrossRefGoogle Scholar
He, J. L. and Chiu, M. C.Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide. Surf. Coat. Technol., 127, 2000, 43–51.CrossRefGoogle Scholar
Huang, Y.-S., Zhang, Y.-Z., Zeng, X.-T. and Hu, X.-F.Study on Raman spectra of electrochromic crystalline-WO3 films and their infrared emittance modulation characteristics. Appl. Surf. Sci., 202, 2002, 104–9.CrossRefGoogle Scholar
Hutchins, M., Kamel, N. and Abdel-Hady, K.Effect of oxygen content on the electrochromic properties of sputtered tungsten oxide films with Li+ insertion. Vacuum, 51, 1998, 433–9.CrossRefGoogle Scholar
Kitao, M., Yamada, S., Yoshida, S., Akram, H. and Urabe, K.Preparation conditions of sputtered electrochromic WO3 films and their infrared absorption spectra. Sol. Energy Mater. Sol. Cells, 25, 1992, 241–55.CrossRefGoogle Scholar
Masetti, E., Grilli, M. L., Dautzenberg, G., Macrelli, G. and Adamik, M.Analysis of the influence of the gas pressure during the deposition of electrochromic WO3 films by reactive r.f. sputtering of W and WO3 target. Sol. Energy Mater. Sol. Cells, 56, 1999, 259–69.CrossRefGoogle Scholar
Pennisi, A., Simone, F., Barletta, G., Di Marco, G. and Lanza, M.Preliminary test of a large electrochromic window. Electrochim. Acta, 44, 1999, 3237–43.CrossRefGoogle Scholar
Batchelor, R. A., Burdis, M. S. and Siddle, J. R.Electrochromism in sputtered WO3 thin films. J. Electrochem. Soc., 143, 1996, 1050–5.CrossRefGoogle Scholar
Burdis, M. S. and Siddle, J. R.Observation of non-ideal lithium insertion into sputtered thin films of tungsten oxide. Thin Solid Films, 237, 1994, 320–5.CrossRefGoogle Scholar
Dao, L. H. and Nguyen, M. T.Prototype solid-state electrochromic window device. Proc. Electrochem. Soc., 90–2, 1990, 246–60.Google Scholar
Shimizu, Y., Noda, K., Nagase, K., Miura, N. and Yamazoe, N.Sogo Rikogaku Kenkyuka Hokoku, Kyusha Daigaku Diagakuin, 12, 1991, 367, as cited in Chem. Abs. 115: 102,676k.Google Scholar
Sharma, N., Deepa, M., Varshney, P. and Agnihotry, S. A.FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique. J. Non-Cryst. Solids, 306, 2002, 129–37.CrossRefGoogle Scholar
Aliev, A. E. and Shin, H. W.Nanostructured materials for electrochromic devices. Solid State Ionics, 154–5, 2002, 425–31.CrossRefGoogle Scholar
Avellaneda, C. O. and Bulhões, L. O.Electrochemical and optical properties of WO3:X sol–gel coatings (X = Li, Ti, Nb, Ta). Proc. SPIE, 4104, 2000, 57–63.CrossRefGoogle Scholar
Avellaneda, C. O. and Bulhões, L. O. S.Intercalation in WO3 and WO3:Li films. Solid State Ionics, 165, 2003, 59–64.CrossRefGoogle Scholar
Baker, A. T., Bosi, S. G., Bell, J. M., MacFarlane, D. R., Monsma, B. G., Skryabin, I. and Wang, J.Degradation mechanisms in electrochromic devices based on sol–gel deposited thin films. Sol. Energy Mater. Sol. Cells, 39, 1995, 133–43.CrossRefGoogle Scholar
Bechinger, C., Muffler, H., Schafle, C., Sundberg, O. and Leiderer, P.Submicron metal oxide structures by a sol–gel process on patterned substrates. Thin Solid Films, 366, 2000, 135–8.CrossRefGoogle Scholar
Cronin, J. P., Tarico, D. J., Tonazzi, J. C. L., Agrawal, A. and Kennedy, S. R.Microstructure and properties of sol–gel deposited WO3 coatings for large area electrochromic windows. Sol. Energy Mater. Sol. Cells, 29, 1993, 371–86.CrossRefGoogle Scholar
Leftheriotis, G., Papaefthimiou, S. and Yianoulis, P.The effect of water on the electrochromic properties of WO3 films prepared by vacuum and chemical methods. Sol. Energy Mater. Sol. Cells, 83, 2004, 115–24.CrossRefGoogle Scholar
Munro, B., Conrad, P., Kramer, S., Schmidt, H. and Zapp, P.Development of electrochromic cells by the sol–gel process. Sol. Energy Mater. Sol. Cells, 54, 1998, 131–7.CrossRefGoogle Scholar
Munro, B., Kramer, S., Zapp, P., Krug, H. and Schmidt, H.All sol–gel electrochromic system for plate glass. J. Non-Cryst. Solids, 218, 1997, 185–8.CrossRefGoogle Scholar
Özkan, E. and Tepehan, F. Z.Optical and structural characteristics of sol–gel-deposited tungsten oxide and vanadium-doped tungsten oxide films. Sol. Energy Mater. Sol. Cells, 68, 2001, 265–77.CrossRefGoogle Scholar
Reisfeld, R., Zayat, M., Minti, H. and Zastrow, A.Electrochromic glasses prepared by the sol–gel method. Sol. Energy Mater. Sol. Cells, 54, 1998, 109–20.CrossRefGoogle Scholar
Rottkay, K., Ozer, N., Rubin, M. and Richardson, T.Analysis of binary electrochromic tungsten oxides with effective medium theory. Thin Solid Films, 308–9, 1997, 50–5.CrossRefGoogle Scholar
Wang, J. and Bell, J. M.The kinetic behaviour of ion injection in WO3 based films produced by sputter and sol–gel deposition, part II: diffusion coefficients. Sol. Energy Mater. Sol. Cells, 58, 1999, 411–29.CrossRefGoogle Scholar
Livage, J., Zarudiansky, A., Rose, R. and Judenstein, P.An ‘all gel’ electrochromic device. Solid State Ionics, 28–30, 1988, 1722–8.Google Scholar
Chemseddine, A., Morineau, R. and Livage, J.Electrochromism of colloidal tungsten oxide. Solid State Ionics, 9–10, 1983, 357–61.CrossRefGoogle Scholar
Judeinstein, P. and Livage, J.Electrochemical degradation of WO3 thin films. J. Mater. Chem., 1, 1991, 621–7.CrossRefGoogle Scholar
Judeinstein, P., Morineau, R. and Livage, J.Electrochemical degradation of WO3. nH2O thin films. Solid State Ionics, 51, 1992, 239–47.CrossRefGoogle Scholar
Yarovskaya, M. I., Obvintseva, I. E., Kessler, V. G., Galyamov, B. S., Kucheiko, S. I., Shifrina, R. R. and Turova, N. Y.Hydrolysis of molybdenum and tungsten alkoxides: sols, powders and films. J. Non-Cryst. Solids, 124, 1990, 155–66.CrossRefGoogle Scholar
Bell, J. M., Green, D. C., Patterson, A., Smith, G. B., MacDonald, K. A., Lec, K., Kirkup, L., Cullen, J. D., West, B. O., Spiccia, L., Kenny, M. J. and Wielunski, L. S.Structure and properties of electrochromic WO3 produced by sol–gel methods. Proc. SPIE, 1536, 1991, 29–36.CrossRefGoogle Scholar
Bell, J. M. and Matthews, J. P.Temperature dependence of kinetic behaviour of sol–gel deposited electrochromics. Sol. Energy Mater. Sol. Cells, 68, 2001, 249–63.CrossRefGoogle Scholar
Medina, A., Solis, J. L., Rodriguez, J. and Estrada, W.Synthesis and characterization of rough electrochromic phosphotungstic acid films obtained by spray-gel process. Sol. Energy Mater. Sol. Cells, 80, 2003, 473–81.CrossRefGoogle Scholar
Judeinstein, P. and Livage, J.Synthesis and multispectroscopic characterization of organically modified polyoxometallates. Proc. SPIE, 1328, 1990, 344–51.CrossRefGoogle Scholar
Babinec, S. J.A quartz crystal microbalance analysis of ion insertion into WO3. Sol. Energy Mater. Sol. Cells, 25, 1992, 269–91.CrossRefGoogle Scholar
Dautremont-Smith, W. C., Green, M. and Kang, K. S.Optical and electrical properties of thin films of WO3 electrochemically coloured. Electrochim. Acta, 22, 1977, 751–9.CrossRefGoogle Scholar
Cogan, S. F., Plante, T. D., Parker, M. A. and Rauh, R. D.Free-electron electrochromic modulation in crystalline LixWO3. J. Appl. Phys., 60, 1986, 2735–8.CrossRefGoogle Scholar
Faughnan, B. W., Crandall, R. S. and Lampert, M. A.Model for the bleaching of WO3 electrochromic films by an electric field. Appl. Phys. Lett., 27, 1975, 275–7.CrossRefGoogle Scholar
Dickens, P. G., Murphy, D. J. and Holstead, T. K.Pulsed NMR study of proton mobility in a hydrogen tungsten bronze. J. Solid State Chem., 6, 1973, 370–3.CrossRefGoogle Scholar
Vanice, M. A., Boudart, M. and Fripiat, J. J.Mobility of hydrogen in hydrogen tungsten bronze. J. Catal., 17, 1970, 359–65.CrossRefGoogle Scholar
Kurita, S., Nishimura, T. and Taira, K.Proton injection phenomena in WO3-electrolyte electrochromic cells. Appl. Phys. Lett., 36, 1980, 585–7.Google Scholar
Shiyanovskaya, I., Ratajczak, H., Baran, J. and Marchewka, M.Fourier transform Raman study of electrochromic crystalline hydrate films WO3·⅓(H2O), J. Mol. Struct., 348, 1995, 99–102.CrossRefGoogle Scholar
Shiyanovskaya, I.Isotopic effect in evolution of structure and optical gap during electrochromic coloration of WO3·⅓(H2O) films. Mikrochim. Acta, S14, 1997, 819–22.Google Scholar
Ho, C.-K., Raistrick, I. D. and Huggins, R. A.Application of AC-techniques to the study of lithium diffusion in tungsten trioxide thin-films. J. Electrochem. Soc., 127, 1980, 343–50.CrossRefGoogle Scholar
Bohnke, O. and Vuillermin, B. Proton insertion into thin films of amorphous WO3: kinetics study. In Balkanski, M., Takahashi, T. and Tuller, H. L. (eds.), Solid State Ionics, Amsterdam, Elsevier, 1992, pp. 593–8.Google Scholar
Dini, D., Decker, F. and Masetti, E.A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+. J. Appl. Electrochem., 26, 1996, 647–53.CrossRefGoogle Scholar
Masetti, E., Dini, D. and Decker, F.The electrochromic response of tungsten bronzes MxWO3 with different ions and insertion rates. Sol. Energy Mater. Sol. Cells, 39, 1995, 301–7.CrossRefGoogle Scholar
Kang, K. and Green, M.Solid state electrochromic cells: optical properties of the sodium tungsten bronze system. Thin Solid Films, 113, 1984, L29–32.CrossRefGoogle Scholar
Ho, K.-C.Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films. Electrochim. Acta, 44, 1999, 3227–35.CrossRefGoogle Scholar
Green, M. and Richman, D.A solid state electrochromic cell: the RbAg4I5∣WO3 system. Thin Solid Films, 24, 1974, S45–6.CrossRefGoogle Scholar
Bohnke, O., Bohnke, C., Robert, G. and Carquille, B.Electrochromism in WO3 thin films, I: LiClO4–propylene carbonate–water electrolytes. Solid State Ionics, 6, 1982, 121–8.CrossRefGoogle Scholar
Crandall, R. S. and Faughnan, B. W.Electronic transport in amorphous HxWO3. Phys. Rev. Lett., 39, 1977, 232–5.CrossRefGoogle Scholar
Goodenough, J. B.Metallic oxides. Prog. Solid. State Chem., 5, 1971, 145–399.CrossRefGoogle Scholar
Goldner, R. B., Mendelsohn, D. H., Alexander, J., Henderson, W. R., Fitzpatrick, D., Haas, T. E., Sample, H. H., Rauh, R. D., Parker, M. A. and Rose, T. L.High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett., 43, 1983, 1093–5.CrossRefGoogle Scholar
Goldner, R. B. and Mendelsohn, D. H.Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films. J. Electrochem. Soc., 131, 1984, 857–60.Google Scholar
Arntz, F. O., Goldner, R. B., Morel, T. E., Haas, T. E. and Wong, G.Near-infrared reflectance modulation with electrochromic crystalline WO3 films deposited on ambient temperature glass substrates by an oxygen ion-assisted technique. J. Appl. Phys., 67, 1990, 3177–9.CrossRefGoogle Scholar
Goldner, R. B., Seward, G., Wong, G., Berera, G., Haas, T. and Norton, P.Improved colored state reflectivity in lithiated WO3 films. Proc. SPIE, 823, 1987, 101–4.CrossRefGoogle Scholar
Schirmer, O. F., Wittner, V., Baur, G. and Brandt, G.Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc., 124, 1977, 749–53.CrossRefGoogle Scholar
Wittwer, V., Schirmer, O. F. and Schlotter, P.Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes. Solid State Commun., 25, 1978, 977–80.CrossRefGoogle Scholar
Dickens, P. G., Quilliam, R. M. P. and Whittingham, M. S.The reflectance spectra of the tungsten bronzes. Mater. Res. Bull., 3, 1968, 941–9.CrossRefGoogle Scholar
Goldner, R. B. Some aspects of charge transport in electrochromic films. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Company, 1988, pp. 351–8.CrossRefGoogle Scholar
Bohnke, O., Gire, A. and Theobald, J. G.In situ detection of electrical conductivity variation of an amorphous-WO3 thin film during electrochemical reduction and oxidation in LiClO4(M)–PC electrolyte. Thin Solid Films, 247, 1994, 51–5.CrossRefGoogle Scholar
Crandall, R. S. and Faughnan, B. W.Measurement of the diffusion coefficient of electrons in WO3 films. Appl. Phys. Lett, 26, 1975, 120–1.CrossRefGoogle Scholar
Crandall, R. S., Wojtowicz, P. J. and Faughnan, B. W.Theory and measurement of the change in chemical potential of hydrogen in amorphous HxWO3 as a function of the stoichiometric parameter x. Solid State Commun., 18, 1976, 1409–11.CrossRefGoogle Scholar
Kirlashkina, Z. I., Popov, F. M., Bilenko, D. L. and Kirlashkin, V. I.Sov. Phys.-Tech. Phys. (Engl. Edn.), 2, 1957, 69, as cited in ref. 361.
Matthias, B. T.Ferro-electric properties of WO3. Phys. Rev., 76, 1949, 430–1.CrossRefGoogle Scholar
Ord, J. L.An ellipsometric study of electrochromism in tungsten oxide. J. Electrochem. Soc., 129, 1982, 767–72.CrossRefGoogle Scholar
Ord, J. L., Pepin, G. M. and Beckstead, D. J.An optical study of hydrogen insertion in the anodic oxide of tungsten. J. Electrochem. Soc., 136, 1989, 362–8.Google Scholar
Denesuk, M., Cronin, J. P., Kennedy, S. R. and Uhlmann, D. R.Relation between coloring and bleaching with lithium in tungsten oxide based electrochromic device. J. Electrochem. Soc., 144, 1997, 1971–9.CrossRefGoogle Scholar
Whittingham, M. S. The formation of tungsten bronzes and their electrochromic properties. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Company, 1988, pp. 325–40.CrossRefGoogle Scholar
Cheng, K. H. and Whittingham, M. S.Lithium incorporation in tungsten oxides. Solid State Ionics, 1, 1980, 151–61.CrossRefGoogle Scholar
Berezin, L. Y. and Malinenko, V. P.Electrochromic coloration and bleaching of polycrystalline tungsten trioxide. Pis'ma. Zh. Tekh. Fiz, 13, 1987, 401–4 [in Russian], as cited in Chem. Abs. 107: 449,382t.Google Scholar
Berezin, L. Y., Aleshina, L. A., Inyushin, N. B., Malinenko, V. P. and Fofanov, A. D.Phase transitions during electrochromic processes in tungsten trioxide. Fiz. Tverd Tela (Leningrad), 31, 1989, 41–9 [in Russian], as cited in Chem. Abs. 112: 225,739.Google Scholar
Kitao, M., Makifuchi, M. and Urabe, K.Residual charges and infrared absorption in electrochromic WO3 films prepared by hydrogen-introduced sputtering. Sol. Energy Mater. Sol. Cells, 70, 2001, 219–30.CrossRefGoogle Scholar
Georg, A., Schweiger, D., Graf, W. and Wittwer, V.The dependence of the chemical potential of WO3 films on hydrogen insertion. Sol. Energy Mater. Sol. Cells, 70, 2002, 437–46.CrossRefGoogle Scholar
Nanba, T., Ishikawa, M., Sakai, Y. and Miura, Y.Changes in atomic and electronic structures of amorphous WO3 films due to electrochemical ion insertion. Thin Solid Films, 445, 2003, 175–81.CrossRefGoogle Scholar
Chang, I. F., Gilbert, B. L. and Sun, T. I.Electrochemichromic systems for display applications. J. Electrochem. Soc., 122, 1975, 955–62.CrossRefGoogle Scholar
Faughnan, B. W., Crandall, R. S. and Heyman, P. M.Electrochromism in WO3 amorphous films. RCA Rev., 36, 1975, 177–97.Google Scholar
Krasnov, Y. S., Sych, O. A., Patsyuk, F. N. and Vas'ko, A. T.Electrochromism and diffusion of charge carriers in amorphous tungsten trioxide, taking into account the electron capture on localized sites. Electrokhimiya, 24, 1988, 1468–74, [in Russian], as cited in Chem Abs. 1110: 1447,1513z.Google Scholar
Mott, N. F.Conduction in Non-Crystalline Materials, 2nd edn, Oxford, Clarendon Press, 1993.Google Scholar
Cox, P. A.The Electronic Structure and Chemistry of Solids, Oxford, Oxford University Press, 1987Google Scholar
Cox, P. A.Transition Metal Oxides: An Introduction to their Electronic Structure and Properties, Oxford, Clarendon Press, 1992Google Scholar
Pifer, J. H. and Sichel, E. K.Electron resonance study of hydrogen-containing WO3 films. J. Electron. Mater., 9, 1980, 129–40.CrossRefGoogle Scholar
Matsuhiro, K. and Masuda, Y.Transmissive electrochromic display using a porous crystalline WO3 counter electrode. Proc. SID, 21, 1980, 101–5.Google Scholar
Owen, J. F., Teegarden, K. J. and Shanks, H. R.Optical properties of the sodium-tungsten bronzes and tungsten trioxide. Phys. Rev. B, 18, 1978, 3827–37.CrossRefGoogle Scholar
Deneuville, A. and Gérard, P.Influence of non-stoichiometry, hydrogen content and crystallinity on the optical properties and electrical properties of HxWOy thin films. J. Electron. Mater., 7, 1978, 559–88.CrossRefGoogle Scholar
Schlotter, P.High contrast electrochromic tungsten oxide layers. Sol. Energy Mater. Sol. Cells, 16, 1987, 39–46.CrossRefGoogle Scholar
Niklasson, G. A., Berggren, L. and Larsson, A.-L.Electrochromic tungsten oxide: the role of defects. Sol. Energy Mater. Sol. Cells, 84, 2004, 315–28.CrossRefGoogle Scholar
Lindan, P., Duplock, E., Zhang, C., Thomas, M., Chatten, R. and Chadwick, A.The interdependence of defects, electronic structure and surface chemistry. J. Chem. Soc., Dalton Trans., 2004, 3076–84.CrossRefGoogle ScholarPubMed
Baucke, F. G. K., Duffy, J. A. and Smith, R. I.Optical absorption of tungsten bronze thin films for electrochromic applications. Thin Solid Films, 186, 1990, 47–51.CrossRefGoogle Scholar
Green, M., Dautremont-Smith, W. C. and Kang, K. S. Second International Conference on Solid Electrolytes (St. Andrews, Scotland, UK), 1978. (Ref. (30) of our ref. 493).
Dixon, R. A., Williams, J. J., Morris, D., Rebane, J., Jones, F. H., Edgell, R. G. and Downes, S. W.Electronic states at oxygen deficient WO3(001) surfaces: a study by resonant photoemission. Surf. Sci., 399, 1998, 199–211.CrossRefGoogle Scholar
Ho, J.-J., Chen, C. Y. and Lee, W. J.Improvement of electrochromic coloration efficiency by oxygen deficiency in sputtering amorphous-WOx films. Electron. Lett., 40, 2004, 510–11.CrossRefGoogle Scholar
Tritthart, U., Gey, W. and Gavrilyuk, A.Nature of the optical absorption band in amorphous HxWO3 thin films. Electrochim. Acta, 44, 1999, 3039–49.CrossRefGoogle Scholar
Yamada, S., Yoshida, S. and Kikao, M. Infrared absorption of colored and bleached films of tungsten oxide. Seventh International Conference on Solid State Ionics, Japan, 1989, abs. 6pB–34.
Scarminio, J., Urbano, A. and Gardes, B.The Beer–Lambert law for electrochromic tungsten oxide thin films. Mater. Chem. Phys., 61, 1999, 143–6.CrossRefGoogle Scholar
Deepa, M., Srivastava, A. K., Singh, S. and Agnihotry, S. A.Structure–property correlation of nanostructured WO3 thin films produced by electrodeposition. J. Mater Res., 19, 2004, 2576–85.CrossRefGoogle Scholar
Bange, K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1992, 10–16.CrossRefGoogle Scholar
Park, N.-G., Kim, M. W., Poquet, A., Campet, G., Portier, J., Choy, J.-H. and Kim, Y.-I.New and simple method for manufacturing electrochromic tungsten oxide films. Active Passive Electron. Components, 20, 1998, 125–33.CrossRefGoogle Scholar
Choy, J.-H., Kim, Y.-I., Park, N.-G., Campet, G. and Grenier, J.-C.New solution route to poly(acrylic acid)/WO3 hybrid film. Chem. Mater., 12, 2000, 2950–6.CrossRefGoogle Scholar
Göttsche, J., Hinsch, A. and Wittwer, V.Electrochromic mixed WO3–TiO2 thin films produced by sputtering and the sol–gel technique: a comparison. Sol. Energy Mater. Sol. Cells, 31, 1993, 415–28.CrossRefGoogle Scholar
Ohtani, B., Masuoka, M., Atsui, T., Nishimoto, S. and Kagiya, N.Electrochromism of tungsten oxide film prepared from tungstic acid. Chem. Express, 3, 1988, 319–22.Google Scholar
Bessiere, A., Badot, J.-C., Certiat, M.-C., Livage, J., Lucas, V. and Baffier, N.Sol–gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim. Acta, 46, 2001, 2251–6.CrossRefGoogle Scholar
Dickens, P. G. and Whittingham, M. S.The tungsten bronzes and related compounds. Quart. Rev. Chem. Soc, 22, 1968, 30–44.CrossRefGoogle Scholar
Goldner, R. B. Electrochromic smart windowTM glass. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1988, pp. 379–89.CrossRefGoogle Scholar
Varjian, R. D., Shabrand, M. and Babinec, S.Application of a solid polymer electrolyte in one square foot electrochromic devices. Proc. Electrochem. Soc., 94–2, 1994, 278–89.Google Scholar
Kaneko, N., Tabata, J. and Miyoshi, T.Electrochromic device watch display. SID Int. Symp. Digest, 12, 1981, 74–5.Google Scholar
Baucke, F. G. K.Electrochromic applications. Mater. Sci. Eng. B, 10, 1991, 285–92.CrossRefGoogle Scholar
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Rivista della Staz. Sper. Vetro, 6, 1986, 119–22.Google Scholar
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Sol. Energy Mater, 16, 1987, 67–77.CrossRefGoogle Scholar
Baucke, F. G. K.Reflecting electrochromic devices—construction, operation and application. Proc. Electrochem. Soc., 20–4, 1990, 298–311.Google Scholar
Baucke, F. G. K., Bange, K. and Gambke, T.Reflecting electrochromic devices. Displays, 9, 1988, 179–87.CrossRefGoogle Scholar
Baucke, F. G. K.Beat the dazzlers, Schott Information, 1, 1983, 11–13.Google Scholar
Baucke, F. G. K.Reflectance control of automotive mirrors. Proc. SPIE, IS4, 1990, 518–38.Google Scholar
Baucke, F. G. K. and Duffy, J. A.Darkening glass by electricity. Chem. Br., 21, 1985, 643–46 and 653.Google Scholar
Baucke, F. G. K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1990, 10–16.Google Scholar
Hersch, H. N., Kramer, W. E. and McGee, J. K.Mechanism of electrochromism in WO3. Appl. Phys. Lett., 27, 1975, 646–8.CrossRefGoogle Scholar
Mohapatra, S. K., Boyd, G. D., Storz, F. G., Wagner, S. and Wudl, F.Application of solid proton conductors to WO3 electrochromic displays. J. Electrochem. Soc., 126, 1979, 805–8.CrossRefGoogle Scholar
Howe, A. T., Sheffield, S. H., Childs, P. E. and Shilton, M. G.Fabrication of films of hydrogen uranyl phosphate tetrahydrate and their use as solid electrolytes in electrochromic displays. Thin Solid Films, 67, 1980, 365–70.CrossRefGoogle Scholar
Giglia, R. D. and Haacke, G.Performance improvements in WO3-based electrochromic displays. Proc. SID, 12, 1981, 41–5.Google Scholar
Cohen, C.Electrochromic display rivals liquid crystals for low-power needs. Electronics, 11, 1981, 65–6.Google Scholar
Schlotter, P. and Pickelmann, L.The xerogel structure of thermally evaporated tungsten oxide layers. J. Electron. Mater., 11, 1982, 207–36.CrossRefGoogle Scholar
Kamimori, T., Nagai, J. and Mizuhashi, M.Electrochromic devices for transmissive and reflective light control. Sol. Energy Mater., 16, 1987, 27–38.CrossRefGoogle Scholar
Taunier, S., Guery, C. and Tarascon, J.-M.Design and characterization of a three-electrode electrochromic device, based on the system WO3/IrO2. Electrochim. Acta, 44, 1999, 3219–25.CrossRefGoogle Scholar
Larsson, A.-L. and Niklasson, G. A.Infrared emittance modulation of all-thin-film electrochromic devices. Mater. Lett., 58, 2004, 2517–20.CrossRefGoogle Scholar
Jonsson, A., Furlani, M. and Niklasson, G. A. G. A.Isothermal transient ionic current study of laminated electrochromic devices for smart window applications. Sol. Energy Mater. Sol. Cells, 84, 2004, 361–7.CrossRefGoogle Scholar
Passerini, S., Scrosati, B., Hermann, V., Holmblad, C. and Bartlett, T.Laminated electrochromic windows based on nickel oxide, tungsten oxide, and gel electrolytes. J. Electrochem. Soc., 141, 1994, 1025–8.CrossRefGoogle Scholar
Andrei, M., Roggero, A., Marchese, L. and Passerini, S.Highly conductive solid polymer electrolyte for smart windows. Polymer, 35, 1994, 3592–7.CrossRefGoogle Scholar
Scrosati, B.Ion conducting polymers and related electrochromic devices. Mol. Cryst. Liq. Cryst., 190, 1990, 161–70.Google Scholar
Orel, B., Opara Krašovec, U., Macek, M., Svegl, F. and Lavrencic Štangar, U.Comparative studies of ‘all sol–gel’ electrochromic devices with optically passive counter-electrode films, ormolyte Li+ ion-conductor and WO3 or Nb2O5 electrochromic films. Sol. Energy Mater. Sol. Cells, 56, 1999, 343–73.CrossRefGoogle Scholar
Papaefthimiou, S., Leftheriotis, G. and Yianoulis, P.Advanced electrochromic devices based on WO3 thin films. Electrochim. Acta, 46, 2001, 2145–50.CrossRefGoogle Scholar
Yoo, S. J., Lim, J. W. and Sung, Y.-E.Improved electrochromic devices with an inorganic solid electrolyte protective layer. Sol. Energy Mater. Sol. Cells, 90, 2006, 477–84.CrossRefGoogle Scholar
Tung, T.-S., Chen, L.-C. and Ho, K.-C.An indium hexacyanoferrate–tungsten oxide electrochromic battery with a hybrid K+/H+-conducting polymer electrolyte. Solid State Ionics, 165, 2003, 257–67.CrossRefGoogle Scholar
Chen, L., Tseng, K., Huang, Y. and Ho, K.Novel electrochromic batteries, II: an InHCF–WO3 cell with a high visual contrast. J. New Mater. Electrochem. Syst., 5, 2002, 213–21.Google Scholar
Su, L., Fang, J., Xiao, Z. and Lu, Z.An all-solid-state electrochromic display device of Prussian blue and WO3 particulate film with a PMMA gel electrolyte. Thin Solid Films, 306, 1997, 133–6.CrossRefGoogle Scholar
Su, L., Xiao, Z. and Lu, Z.All solid-state electrochromic window of electrodeposited WO3 and Prussian blue film with PVC gel electrolyte. Thin Solid Films, 320, 1998, 285–9.CrossRefGoogle Scholar
Su, L., Wang, H. and Lu, Z.All-solid-state electrochromic window of Prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte. Mater. Chem. Phys., 56, 1998, 266–70.CrossRefGoogle Scholar
Chen, L.-C. and Ho, K.-C.Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system. Electrochim. Acta, 46, 2001, 2151–8.CrossRefGoogle Scholar
Chen, L., Huang, Y., Tseng, K. and Ho, K.Novel electrochromic batteries, I: a PB–WO3 cell with a theoretical voltage of 1.35 V. J. New Mater. Electrochem. Syst., 5, 2002, 203–12.Google Scholar
Bernard, M.-C., Hugot-Le Goff, A. and Zeng, W.Elaboration and study of a PANI/PAMPS/WO3 all solid-state electrochromic device. Electrochim. Acta, 44, 1998, 781–96.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Nodland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide. Electrochim. Acta, 38, 1993, 1497–500.CrossRefGoogle Scholar
Marcel, C. and Tarascon, J.-M.An all-plastic WO3·H2O/polyaniline electrochromic device. Solid State Ionics, 143, 2001, 89–101.CrossRefGoogle Scholar
Michalak, F. and Aldebert, P.A flexible electrochromic device based on colloidal tungsten oxide and polyaniline. Solid State Ionics, 85, 1996, 265–72.CrossRefGoogle Scholar
Tassi, E. L. and Paoli, M.-A. An electrochromic device based on association of the graft copolymer of polyaniline and nitrilic rubber with WO3. Electrochim. Acta, 39, 1994, 2481–4.CrossRefGoogle Scholar
Bich, V. T., Bernard, M. C. and Hugot-Le Goff, A.Resonant Raman identification of the polaronic organization in PANI. Synth. Met., 101, 1999, 811–12.Google Scholar
Jelle, B. P., Hagen, G., Sunde, S. and Ødegård, R.Dynamic light modulation in an electrochromic window consisting of polyaniline, tungsten oxide and a solid polymer electrolyte. Synth. Met., 54, 1993, 315–20.CrossRefGoogle Scholar
Topart, P. and Hourquebie, P.Infrared switching electroemissive devices based on highly conducting polymers. Thin Solid Films, 352, 1999, 243–8.CrossRefGoogle Scholar
Bernard, M. C. and Hugot-Le Goff, A.Reactions at the two sides of an ECD device studied by Raman spectroscopy. Synth. Met., 102, 1999, 1342–5.CrossRefGoogle Scholar
Bernard, M.-C., Hugot-Le Goff, A. and Zeng, W.Characterization and stability tests of an all solid state electrochromic cell using polyaniline. Synth. Met., 85, 1997, 1347–8.CrossRefGoogle Scholar
Rauh, R. D., Wang, F., Reynolds, J. R. and Meeker, D. L.High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 46, 2001, 2023–9.CrossRefGoogle Scholar
Paoli, M.-A., Zanelli, A., Mastragostino, M. and Rocco, A. M.An electrochromic device combining polypyrrole and WO3, II: solid-state device with polymeric electrolyte. J. Electroanal. Chem., 435, 1997, 217–24.CrossRefGoogle Scholar
Lee, D. S., Lee, D. D., Hwang, H. R., Paik, J. H., Huh, J. S., Lim, J. O. and Lee, J. J.Characteristics of electrochromic device with polypyrrole and WO3. J. Mater. Sci.: Mater. Electron., 12, 2001, 41–4.Google Scholar
Rocco, A. M., Paoli, M.-A., Zanelli, A. and Mastragostino, M.An electrochromic device combining polypyrrole and WO3, I: liquid electrolyte. Electrochim. Acta, 41, 1996, 2805–16.CrossRefGoogle Scholar
Hurditch, R.Electrochromism in hydrated tungsten-oxide films. Electron. Lett., 11, 1975, 142–4.CrossRefGoogle Scholar
Stocker, R. J., Singh, S., Uitert, L. G. and Zydzik, G. J.Efficiency and humidity dependence of WO3–insulator electrochromic display structures. J. Appl. Phys., 50, 1979, 2993–4.CrossRefGoogle Scholar
Hefny, M. M., Gadallah, A. G. and Mogoda, A. S.Some electrochemical properties of the anodic oxide film on tungsten. Bull. Electrochem., 3, 1987, 11–14.Google Scholar
Reichman, B. and Bard, A. J.The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J. Electrochem. Soc., 126, 1979, 583–91.CrossRefGoogle Scholar
Perez, M. A. and Teijelo, M. L.Ellipsometric study of WO3 films dissolution in aqueous solutions. Thin Solid Films, 449, 2004, 138–46.CrossRefGoogle Scholar
Gavrilko, T. A., Stepkin, V. I. and Shiyanovskaya, I. V.IR and optical spectroscopy of structural changes of WO3 electrochromic thin films. J. Mol. Struct., 218, 1990, 411–16.CrossRefGoogle Scholar
Rice, C. E.A comparison of the behaviours of tungsten trioxide and anodic iridium oxide film electrochromics in non-aqueous acidic medium. Appl. Phys. Lett., 35, 1979, 563–5.CrossRefGoogle Scholar
Tell, B.Electrochromism in solid phosphotungstic acid. J. Electrochem. Soc., 127, 1980, 2451–4.CrossRefGoogle Scholar
Tell, B. and Wudl, F.Electrochromic effects in solid phosphotungstic acid and phosphomolybdic acid. J. Appl. Phys., 50, 1979, 5944–6.CrossRefGoogle Scholar
Shen, P. K., Huang, H. and Tseung, A. C. C.Improvements in the life of WO3 electrochromic films. J. Mater. Chem., 2, 1992, 497–9.CrossRefGoogle Scholar
Nah, Y.-C., Ahn, K.-S. and Sung, Y.-E. Effects of tantalum oxide films on stability and optical memory in electrochromic tungsten oxide films. Solid State Ionics, 165, 2003, 229–33.CrossRefGoogle Scholar
Azens, A., Hjelm, A., Bellac, D., Granqvist, C. G., Barczynska, J., Pentuss, E., Gabrusenoks, J. and Wills, J. M.Electrochromism of W-oxide-based films: some theoretical and experimental results. Proc. SPIE, 2531, 1995, 92–104.CrossRefGoogle Scholar
Haranahalli, A. R. and Dove, D. B.Influence of a thin gold surface layer on the electrochromic behavior of WO3 films. Appl. Phys. Lett., 36, 1980, 791–3.CrossRefGoogle Scholar
Haranahalli, A. R. and Holloway, P. H.The influence of metal overlayers on electrochromic behavior of tungsten trioxide films. J. Electron. Mater., 10, 1981, 141–72.CrossRefGoogle Scholar
Denesuk, M., Cronin, J. P., Kennedy, S. R. and Uhlmann, D. R.Step-current analysis of the built-in potential of tungsten oxide-based electrochromic devices and the effects of spontaneous hydrogen deintercalation. J. Electochem. Soc., 144, 1997, 888–97.CrossRefGoogle Scholar
Kamal, H., Akl, A. A. and Abdel-Hady, K.Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Physica B: Condensed Matter, 349, 2004, 192–205.CrossRefGoogle Scholar
Zhang, J.-G., Benson, D. K., Tracy, C. E., Webb, J. and Deb, S. K.Self-bleaching mechanism of electrochromic WO3 films. Proc. SPIE, 2017, 1993, 104–12.CrossRefGoogle Scholar
Ivanova, T., Gesheva, K. A., Popkirov, M., Ganchev, M. and Tzvetkova, E.Electrochromic properties of atmospheric CVD MoO3 and MoO3–WO3 films and their application in electrochromic devices. Mater. Sci. Eng. B, 119, 2005, 232–9.CrossRefGoogle Scholar
Colten, R. J., Guzman, A. M. and Rabalais, J. W.Electrochromism in some thin-film transition-metal oxides characterised by X-ray electron spectroscopy. J. Appl. Phys., 49, 1978, 409–16.CrossRefGoogle Scholar
Sian, T. S. and Reddy, G. B.Infrared and electrochemical studies on Mg intercalated amorphous-MoO3 thin films. Solid State Ionics, 167, 2004, 399–405.CrossRefGoogle Scholar
Ord, J. L. and DeSmet, D. J.Optical anisotropy and electrostriction in the anodic oxide of molybdenum. J. Electrochem. Soc., 130, 1983, 280–4.CrossRefGoogle Scholar
Yao, J. N., Loo, B. H., Hashimoto, K. and Fujishima, A.Photochromic and electrochromic behavior of electrodeposited MoO3 thin films. J. Electroanal. Chem., 290, 1990, 263–7.CrossRefGoogle Scholar
Kharrazi, M., Azens, A., Kullman, L. and Granqvist, C. G.High-rate dual-target d.c. magnetron sputter deposition of electrochromic MoO3 films. Thin Solid Films, 295, 1997, 117–21.CrossRefGoogle Scholar
Gorenstein, A., Scarminio, J. and Lourenço, A.Lithium insertion in sputtered amorphous molybdenum thin films. Solid State Ionics, 86–8, 1996, 977–81.CrossRefGoogle Scholar
Bica De Moraes, M. A., Transferetti, B. C., Rouxinol, F. P., Landers, R., Durant, S. F., Scarminio, J. and Urbano, B.Molybdenum oxide thin films obtained by hot-filament metal oxide deposition technique. Chem. Mater., 163, 2004, 513–20.CrossRefGoogle Scholar
Cruz, T. G. S., Gorenstein, A., Landers, R., Kleiman, G. G. and deCastro, S. C.Electrochromism in MoOx films characterized by X-ray electron spectroscopy. J. Electron. Spectrosc. Relat. Phenom., 101–3, 1999, 397–400.CrossRefGoogle Scholar
Ferreira, F. F., Souza Cruz, T. G., Fantini, M. C. A., Tabacniks, M. H., Castro, S. C., Morais, J., Siervo, A., Landers, R. and Gorenstein, A.Lithium insertion and electrochromism in polycrystalline molybdenum oxide films. Solid State Ionics, 136–7, 2000, 357–63.CrossRefGoogle Scholar
Abe, Y., Imamura, H., Washizu, E. and Sasaki, K.Formation process of reactively sputtered MoO3 thin films and their optical properties. Proc. Electrochem. Soc., 2002–22, 2003, 62–7.Google Scholar
Hamelmann, F., Brechling, A., Aschentrup, A., Heinzmann, U., Jutzi, P., Sandrock, J., Siemeling, U., Ivanova, T., Szekeres, A. and Gesheva, K.Thin molybdenum oxide films produced by molybdenum pentacarbonyl 1-methylbutylisonitrile with plasma-assisted chemical vapor deposition. Thin Solid Films, 446, 2004, 167–71.CrossRefGoogle Scholar
Hinokuma, K., Kishimoto, A. and Kudo, T.Coloration dynamics of spin-coated MoO3·nH2O electrochromic films fabricated from peroxo-polymolybdate solution. J. Electrochem. Soc., 141, 1994, 876–9.CrossRefGoogle Scholar
Zhang, Y., Kuai, S., Wang, Z. and Hu, X.Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol–gel process. Appl. Surf. Sci., 165, 2000, 56–9.CrossRefGoogle Scholar
Tolgyesi, M. and Novak, M.New method of preparation and some properties of electrochromic MoO3 thin layer. Jpn. J. Appl. Phys., 32, 1993, 93–6.CrossRefGoogle Scholar
Laperriere, G., Lavoie, M. A. and Belenger, D.Electrochromic behavior of molybdenum trioxide thin films, prepared by thermal oxidation of electrodeposited molybdenum trisulfide, in mixtures of nonaqueous and aqueous electrolytes. J. Electrochem. Soc., 143, 1996, 3109–17.CrossRefGoogle Scholar
McEvoy, T. M., Stevenson, K. J., Hupp, J. T. and Dang, X.Electrochemical preparation of molybdenum trioxide thin films: effect of sintering on electrochromic and electroinsertion properties. Langmuir, 19, 2003, 4316–26.CrossRefGoogle Scholar
Whittingham, M. S.Hydrogen motion in oxides: from insulators to bronzes. Solid State Ionics, 168, 2004, 255–63.CrossRefGoogle Scholar
DeSmet, D. J. and Ord, J. L.An optical study of hydrogen insertion in the anodic oxide of molybdenum. J. Electrochem. Soc., 134, 1987, 1734–40.CrossRefGoogle Scholar
Crouch-Baker, S. and Dickens, P. G.Hydrogen insertion compounds of the molybdic acids, MoO3·nH2O (n = 1, 2). Mater. Res. Bull., 19, 1984, 1457–62.CrossRefGoogle Scholar
Yao, J. N., Yang, Y. A. and Loo, B. H.Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B, 102, 1998, 1856–60.CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G.Electrochromic films of tungsten oxyfluoride and electron bombarded tungsten oxide. Sol. Energy Mater. Sol. Cells, 44, 1996, 333–40.CrossRefGoogle Scholar
Kuwabara, K., Sugiyama, K. and Ohno, M.All-solid-state electrochromic device, 1: electrophoretic deposition film of proton conductive solid electrolyte. Solid State Ionics, 44, 1991, 313–18.CrossRefGoogle Scholar
Kuwabara, K., Ohno, M. and Sugiyama, K.All-solid-state electrochromic device, 2: characterization of transition-metal oxide thin films for counter electrode. Solid State Ionics, 44, 1991, 319–23.CrossRefGoogle Scholar
Petit, M. A. and Plichon, V.Anodic electrodeposition of iridium oxide films. J. Electroanal. Chem., 444, 1998, 247–52.CrossRefGoogle Scholar
Kötz, E. R. and Neff, H.Anodic iridium oxide films: an UPS study of emersed electrodes. Surf. Sci., 160, 1985, 517–30.CrossRefGoogle Scholar
Gottesfeld, S. and Schiavone, L. M.Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction. J. Electroanal. Chem., 86, 1978, 89–104.CrossRefGoogle Scholar
Gottesfeld, S. and McIntyre, J. D. E.Electrochromism in anodic iridium oxide. J. Electrochem. Soc., 126, 1979, 742–50.CrossRefGoogle Scholar
Gottesfeld, S., McIntyre, J. D. E., Beni, G. and Shay, J. L.Electrochromism in anodic iridium oxide films. Appl. Phys. Lett., 33, 1978, 208–10.CrossRefGoogle Scholar
Beni, G. and Shay, J. L. Electrochromism of anodic iridium oxide films. In Vashishta, P., Mundy, J. N. and Shenoy, G. K. (eds.), Fast Ion Transport in Solids, Amsterdam, Elsevier, 1979, pp. 75–8.Google Scholar
Shay, J. L., Beni, G. and Schiavone, L. M.Electrochromism of anodic iridium oxide films on transparent substrates. Appl. Phys. Lett., 33, 1978, 942–4.CrossRefGoogle Scholar
Beni, G. and Shay, J. L.Electrochromism of heat-treated anodic iridium oxide films in acidic, neutral, and alkaline solutions. Appl. Phys. Lett., 33, 1978, 567–8.CrossRefGoogle Scholar
Beni, G., Rice, C. E. and Shay, J. L.Electrochromism of iridium oxide films, III: anion mechanism. J. Electrochem. Soc., 127, 1980, 1342–8.CrossRefGoogle Scholar
Dautremont-Smith, W. C., Beni, G., Schiavone, L. M. and Shay, J. L. Solid-state electrochromic cell with anodic iridium oxide film electrodes. In Vashishta, P., Mundy, J. N. and Shenoy, G. K. (eds.), Fast Ion Transport in Solids, Amsterdam, Elsevier, 1979, pp. 99–101.Google Scholar
Dautremont-Smith, W. C., Beni, G., Schiavone, L. M. and Shay, J. L.Solid-state electrochromic cell with anodic iridium oxide film electrodes. Appl. Phys. Lett., 35, 1979, 565–7.CrossRefGoogle Scholar
Mo, Y., Stefan, I. C., Cai, W.-B.et al. In situ LIII-edge X-ray absorption and surface enhanced Raman spectroscopy of electrodeposited iridium oxide films in aqueous electrolytes. J. Phys. Chem. B, 106, 2002, 3681–6.CrossRefGoogle Scholar
Yamanaka, K.The electrochemical behaviour of anodically deposited iridium oxide films and the reliability of transmittance variable cells. Jpn. J. Appl. Phys., 30, 1991, 1295–8.CrossRefGoogle Scholar
Patil, P. S., Kawar, R. K. and Sadale, S. B.Effect of substrate temperature on electrochromic properties of spray-deposited Ir-oxide thin films. Appl. Surf. Sci., 249, 2005, 367–74.CrossRefGoogle Scholar
Klein, J. D. and Clauson, S. L.Chemistry of electrochromic IrOx films deposited under variable redox conditions. Mater. Res. Soc. Symp. Proc., 369, 1995, 149–54.CrossRefGoogle Scholar
Sato, Y.Characterization of thermally oxidized iridium oxide films. Vacuum, 41, 1990, 1198–200.CrossRefGoogle Scholar
Michalak, F., Rault, L. and Aldebert, P.Electrochromism with colloidal WO3 and IrO2. Proc. SPIE, 1728, 1992, 278–88.CrossRefGoogle Scholar
Kötz, R., Barbero, C. and Haas, O.Probe beam deflection investigation of the charge storage reaction in anodic iridium and tungsten oxide films. J. Electroanal. Chem., 296, 1990, 37–49.CrossRefGoogle Scholar
McIntyre, J. D. E., Basu, S., Peck, W. F., Brown, W. L. and Augustyniak, W. M.Cation insertion reactions of electrochromic iridium oxide films. Solid State Ionics, 5, 1981, 359–62.CrossRefGoogle Scholar
Ord, J. L.An ellipsometric study of electrochromism in iridium oxide. J. Electrochem. Soc., 129, 1982, 335–9.CrossRefGoogle Scholar
Rice, C. E. Ionic conduction in electrochromic anodic iridium oxide films. In Vashishta, P., Mundy, J. N. and Shenoy, G. K. (eds.), Fast Ion Transport in Solids, Amsterdam, Elsevier, 1979, p. 103–4.Google Scholar
Sziráki, L. and Bóbics, L.Impedance study of electrochromism in anodic Ir oxide films. Electrochim. Acta., 47, 2002, 2189–97.CrossRefGoogle Scholar
Sanjinés, R., Aruchamy, A. and Lévy, F.Metal–non metal transition in electrochromic sputtered iridium oxide films. Solid State Commun., 64, 1987, 645–50.CrossRefGoogle Scholar
Hackwood, S. and Beni, G.Phase transitions in iridium oxide films. Solid State Ionics, 2, 1981, 297–9.CrossRefGoogle Scholar
Gutiérrez, C., Sanchez, M., Pena, J. I., Martinez, C. and Martinez, M. A.Potential-modulated reflectance study of the oxidation state of iridium in anodic iridium oxide films. J. Electrochem. Soc., 134, 1987, 2119–26.CrossRefGoogle Scholar
Kang, K. S. and Shay, J. L.Blue sputtered iridium oxide films (blue SIROF's). J. Electrochem. Soc., 130, 1983, 766–9.CrossRefGoogle Scholar
Sato, Y., Ono, K., Kobayashi, T., Watanabe, H. and Yamanoka, H.Electrochromism in iridium oxide films prepared by thermal oxidation of iridium–carbon composite films. J. Electrochem. Soc., 134, 1987, 570–5.CrossRefGoogle Scholar
Baudry, P., Aegerter, M. A., Deroo, D. and Valla, B.Electrochromic window with lithium conductive polymer electrolyte. Proc. Electrochem. Soc., 90–2, 1990, 274–87.Google Scholar
Shamritskaya, I. G., Lazorenko-Manevich, R. M. and Sokolova, L. A.Effects of anions on the electroreflectance spectra of anodically oxidized iridium in aqueous solutions. Russ. J. Electrochem., 33, 1997, 645–52.Google Scholar
Rice, C. E. and Bridenbaugh, P. M.Observation of electrochromism in solid-state anodic iridium oxide film cells using fluoride electrolytes. Appl. Phys. Lett., 38, 1981, 59–61.CrossRefGoogle Scholar
Ishihara, S.Erasable optical memory device, Jpn. Kokai Tokkyo Koho JP 63,119,035, as cited in Chem. Abs. 110: P48,553z, 1989.Google Scholar
Sanjinés, R., Aruchamy, A. and Lévy, F.Thermal stability of sputtered iridium oxide films. J. Electrochem. Soc., 136, 1989, 1740–4.CrossRefGoogle Scholar
Yano, J., Noguchi, K., Yamasaki, S. and Yamazaki, S.Novel color change of electrochromic iridium oxide in a matrix aramid resin film. Electrochem. Commun., 6, 2004, 110–14.CrossRefGoogle Scholar
Saito, T., Ushio, Y., Yamada, M. and Niwa, T. Properties of all solid-state thin film electrochromic device. Seventh International Conference on Solid State Ionics, Japan, 1989, p. abs. 6pB–40.
Heckner, K.-H., and Kraft, A.Similarities between electrochromic windows and thin film batteries. Solid State Ionics, 152–3, 2002, 899–905.CrossRefGoogle Scholar
Cerc Korošec, R., Bukovec, P., Pihlar, B. and Gomilšek, J. P.The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method: part I. Thermochim. Acta, 402, 2003, 57–67.CrossRefGoogle Scholar
Cerc Korošec, R., Bukovec, P., Pihlar, B., Vuk, Šurca A., Orel, B. and Drazic, G.Preparation and structural investigations of electrochromic nanosized NiOx films made via the sol–gel route. Solid State Ionics, 165, 2003, 191–200.CrossRefGoogle Scholar
Natarajan, C., Ohkubo, S. and Nogami, G.Influence of film processing temperature on the electrochromic properties of electrodeposited nickel hydroxide. Solid State Ionics, 86–8, 1996, 949–53.CrossRefGoogle Scholar
Scarminio, J., Gorenstein, A., Decker, F., Passerini, S., Pileggi, R. and Scrosati, B.Cation insertion in electrochromic NiOx films. Proc. SPIE, 1536, 1991, 70–80.CrossRefGoogle Scholar
Hutchins, M. G., McMeeking, G. and Xingfang, H.Rf diode sputtered nickel oxide films. Proc. SPIE, 1272, 1990, 139–50.CrossRefGoogle Scholar
Wruck, D. A. and Rubin, M.Structure and electronic properties of electrochromic NiO films. J. Electrochem. Soc., 140, 1993, 1097–104.CrossRefGoogle Scholar
Ushio, Y., Ishikawa, A. and Niwa, T.Degradation of the electrochromic nickel oxide film upon redox cycling. Thin Solid Films, 280, 1996, 233–7.CrossRefGoogle Scholar
Urbano, A., Ferreira, F. F., deCastro, S. C., Landers, R., Fantini, M. C. A. and Gorenstein, A.Electrochromism in lithiated nickel oxide films deposited by rf sputtering. Electrochim. Acta, 46, 2001, 2269–73.CrossRefGoogle Scholar
Kitao, M., Izawa, K. and Yamada, S.Electrochromic properties of nickel oxide films prepared by introduction of hydrogen into sputtering atmosphere. Sol. Energy Mater. Sol. Cells, 39, 1995, 115–22.CrossRefGoogle Scholar
Agrawal, A., Habibi, H. R., Agrawal, R. K., Cronin, J. P., Roberts, D. M., Caron-Papowich, R. and Lampert, C. M.Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films, 221, 1992, 239–53.CrossRefGoogle Scholar
Porqueras, I. and Bertran, E.Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation. Thin Solid Films, 398–9, 2001, 41–4.CrossRefGoogle Scholar
Bouessay, I., Rougier, A., Beaudoin, B. and Leriche, J. B.Pulsed laser-deposited nickel oxide thin films as electrochromic anodic materials. Appl. Surf. Sci., 186, 2002, 490–5.CrossRefGoogle Scholar
Wen, S.-J., von Rottkay, K. and Rubin, M.Electrochromic lithium nickel oxide thin film by pulsed laser deposition. Proc. Electrochem. Soc., 96–24, 1996, 54–63.Google Scholar
Rubin, M., Wen, S.-J., Richardson, T., Kerr, J., von Rottkay, K. and Slack, J.Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Sol. Energy Mater. Sol. Cells, 54, 1998, 59–66.CrossRefGoogle Scholar
Wen, S.-J., Kerr, J., Rubin, M., Slack, J. and Rottkay, K.Analysis of durability in lithium nickel oxide electrochromic materials and devices. Sol. Energy Mater. Sol. Cells, 56, 1999, 299–307.CrossRefGoogle Scholar
Bouessay, I., Rougier, A. and Tarascon, J.-M.Electrochromic mechanism in nickel oxide thin films grown by pulsed laser deposition, Proc. Electrochem. Soc., 2003–22, 2003, 91–102.Google Scholar
Anders, S., Anders, A., Rubin, M., Wang, Z., Raoux, S., Kong, F. and Brown, I. G.Formation of metal oxides by cathodic arc deposition. Surf. Coat. Technol., 76–7, 1995, 167–73.CrossRefGoogle Scholar
Velevska, J. and Ristova, M.Electrochromic properties of NiOx prepared by low vacuum evaporation. Sol. Energy Mater. Sol. Cells, 73, 2002, 131–9.CrossRefGoogle Scholar
Scarminio, J., Urbano, B., Gardes, J. and Gorenstein, A.Electrochromism in nickel oxide films obtained by thermal decomposition. J. Mater. Sci. Lett., 11, 1992, 562–3.CrossRefGoogle Scholar
Terresi, Córdoba S. I., le-Goff, Hugot A. and Takenouti, H.Electrochromism in metal oxide films studied by Raman spectroscopy and A. C. techniques: charge insertion mechanism. Proc. SPIE, 1272, 1990, 152–61.CrossRefGoogle Scholar
Torresi, R. M., Vazquez, M. V., Gorenstein, A. and Torresi, S. I. C.Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation. Thin Solid Films, 229, 1993, 180–6.CrossRefGoogle Scholar
Chigane, M., Ishikawa, M. and Inoue, H.Further XRD characterization of electrochromic nickel oxide thin films prepared by anodic deposition. Sol. Energy Mater. Sol. Cells, 64, 2000, 65–72.CrossRefGoogle Scholar
Chigane, M. and Ishikawa, M.Electrochromic properties of nickel oxide thin films prepared by electrolysis followed by chemical deposition. Electrochim. Acta, 42, 1997, 1515–19.CrossRefGoogle Scholar
Chigane, M. and Ishikawa, M.XRD and XPS characterization of electrochromic nickel oxide thin films prepared by electrolysis–chemical deposition. J. Chem. Soc., Faraday Trans., 94, 1998, 3665–70.CrossRefGoogle Scholar
Jiménez-González, A. E. and Cambray, J. G.Deposition of NiOx thin films by sol–gel technique. Surf. Eng., 16, 2000, 73–6.CrossRefGoogle Scholar
Mahmoud, S. A., Aly, S. A., Abdel-Rahman, M. and Abdel-Hady, K.Electrochromic characterisation of electrochemically deposited nickel oxide films, Physica B: Condens. Matter, 293, 2000, 125–31.CrossRefGoogle Scholar
Ristova, M., Velevska, J. and Ristov, M.Chemical bath deposition and electrochromic properties of NiOx films. Sol. Energy Mater. Sol. Cells, 71, 2002, 219–30.CrossRefGoogle Scholar
Orel, Crnjak Z., Hutchins, M. G. and McMeeking, G.The electrochromic properties of hydrated nickel oxide films formed by colloidal and anodic deposition. Sol. Energy Mater. Sol. Cells, 30, 1993, 327–37.CrossRefGoogle Scholar
Sato, Y., Ando, M. and Murai, K.Electrochromic properties of spin-coated nickel oxide films. Solid State Ionics, 113–15, 1998, 443–7.CrossRefGoogle Scholar
Richardson, T. J. and Rubin, M. D.Liquid phase deposition of electrochromic thin films. Electrochim. Acta, 46, 2001, 2119–23.CrossRefGoogle Scholar
Fantini, M. C. A., Bezerra, G. H., Carvalho, C. R. C. and Gorenstein, A.Electrochromic properties and temperature dependence of chemically deposited Ni(OH) x thin films. Proc. SPIE, 1536, 1991, 81–92.CrossRefGoogle Scholar
Kadam, L. D. and Patil, P. S.Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique. Sol. Energy Mater. Sol. Cells, 69, 2001, 361–9.CrossRefGoogle Scholar
Arakaki, J., Reyes, R., Horn, M. and Estrada, W.Electrochromism in NiOx and WOx obtained by spray pyrolysis. Sol. Energy Mater. Sol. Cells, 37, 1995, 33–41.CrossRefGoogle Scholar
Mahmoud, S. A., Akl, A. A., Kamal, H. and Abdel-Hady, K.Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis. Physica B, 311, 2002, 366–75.CrossRefGoogle Scholar
Maruyama, T. and Arai, S.The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition. Sol. Energy Mater. Sol. Cells, 30, 1993, 257–62.CrossRefGoogle Scholar
Murai, K., Mihara, T., Mochizuki, S., Tamura, S. and Sato, Y.Electrochromism in nickel oxide films prepared by plasma oxidation of nickel–carbon composite films. Solid State Ionics, 86–8, 1996, 955–8.CrossRefGoogle Scholar
Suiyang, H., Fengbo, C. and Jicai, Z. Electrochromism in hydrated nickel oxide films made by RF sputtering. In Chowdari, B. V. R. and Radharkrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1988, pp. 521–6.CrossRefGoogle Scholar
Ahn, K.-S., Nah, Y.-C. and Sung, Y.-E.Surface morphological, microstructural, and electrochromic properties of short-range ordered and crystalline nickel oxide thin films. Appl. Surf. Sci., 199, 2002, 259–69.CrossRefGoogle Scholar
Murphy, T. P. and Hutchins, M. G.Oxidation states in nickel oxide electrochromism. Sol. Energy Mater. Sol. Cells, 39, 1995, 377–89.CrossRefGoogle Scholar
Bouessay, I., Rougier, A., Poizat, O., Moscovici, J., Michalowicz, A. and Tarascon, J. M.Electrochromic degradation in nickel oxide thin films: a self-discharge and dissolution phenomenon. Electrochim. Acta, 50, 2005, 3737–45.CrossRefGoogle Scholar
Oliva, P. J. L., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M., Fievet, F. and Guibert, A.Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources, 8, 1992, 229–55.CrossRefGoogle Scholar
Nemetz, A., Temmink, A., Bange, K., Torresi, Córdoba S., Gabrielli, C., Torresi, R. and Hugot le-Goff., A.Investigations and modeling of e−-beam evaporated NiO(OH) x films. Sol. Energy Mater. Sol. Cells, 25, 1992, 93–103.CrossRefGoogle Scholar
Lampert, C. M.In situ spectroscopic studies of electrochromic hydrated nickel oxide films. Sol. Energy Mater., 19, 1989, 1–16.Google Scholar
Rosolen, J. M., Decker, F., Fracastoro-Decker, M., Gorenstein, A., Torresi, R. M. and Torresi, Córdoba S. I.A mirage effect analysis of the electrochemical processes in nickel hydroxide electrodes. J. Electroanal. Chem., 354, 1993, 273–9.CrossRefGoogle Scholar
Gorenstein, A., Decker, F., Estrada, W., Esteves, C., Andersson, A., Passerini, S., Pantaloni, S. and Scrosati, B.Electrochromic NiOxHy hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte. J. Electroanal. Chem., 277, 1990, 277–90.CrossRefGoogle Scholar
MacArthur, D. M.The proton diffusion coefficient for the nickel hydroxide electrode. J. Electrochem. Soc., 117, 1970, 729–32. MacArthur consistently in this paper talks of ‘ΔH for diffusion’, but in fact the data from his Arrhenius-type graphs yield EA.CrossRefGoogle Scholar
Guzmán, Schrebler R. S., Vilche, J. R. and Arviá, A. J.Rate processes related to the hydrated nickel hydroxide electrode in alkaline solutions. J. Electrochem. Soc., 125, 1978, 1578–87.CrossRefGoogle Scholar
Faria, I. C., Kleinke, M., Gorenstein, A., Fantini, M. C. A. and Tabacniks, M. H.Toward efficient electrochromic NiOx films: a study of microstructure, morphology, and stoichiometry of radio-frequency sputtered films. J. Electrochem. Soc., 145, 1998, 235–41.CrossRefGoogle Scholar
Liquan, C., Ming, D., Yunfa, C., Chunxiang, S. and Rungjian, X. Study on EC Ni-O thin film and new EC device. Seventh International Conference on Solid State Ionics, Japan, 1989, abs. 6pB–38.
Šurca, A., Orel, B. and Pihlar, B.Sol–gel derived hydrated nickel oxide electrochromic films: optical, spectroelectrochemical and structural properties. J. Sol Gel Sci. Technol., 8, 1997, 743–8.CrossRefGoogle Scholar
Fantini, M. and Gorenstein, A.Electrochromic nickel hydroxide films on transparent/conducting substrates. Sol. Energy Mater., 16, 1987, 487–500.CrossRefGoogle Scholar
Jeong, D. J., Kim, W.-S. and Sung, Y. E.Improved electrochromic response time of nickel hydroxide thin films by ultra-thin nickel metal underlayer. Jpn. J. Appl. Phys., 40, 2001, L708–10.CrossRefGoogle Scholar
Decker, F., Pileggi, R., Passerini, S. and Scrosati, B.A comparison of the electrochromic behaviour and the mechanical properties of WO3 and NiOx thin-film electrodes. J. Electrochem. Soc., 138, 1991, 3182–6.CrossRefGoogle Scholar
Azens, A., Kullman, L., Vaivars, G., Nordborg, H. and Granqvist, C. G.Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics, 113–15, 1998, 449–56.CrossRefGoogle Scholar
Trimble, C., DeVries, M., Hale, J. S., Thompson, D. W., Tiwald, T. E. and Woolan, J. A.Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide. Thin Solid Films, 355–6, 1999, 26–34.CrossRefGoogle Scholar
Avino, C., Panero, S. and Scrosati, B.An electrochromic window based on a modified polypyrrole/nickel oxide combination. J. Mater. Chem., 2, 1993, 1259–61.CrossRefGoogle Scholar
Arbizzani, C., Mastragostino, M., Passerini, S., Pillegi, R. and Scrosati, B.An electrochromic window based on polymethyl thiophene and nickel oxide electrodes. Electrochim. Acta, 36, 1991, 837–40.CrossRefGoogle Scholar
Richardson, T. J., Slack, J. L. and Rubin, M. D.Electrochromism in copper oxide thin films. Electrochim. Acta, 46, 2001, 2281–4.CrossRefGoogle Scholar
Garnich, F., Yu, P. C. and Lampert, C. M.Hydrated manganese oxide as a counter-electrode material for an electrochromic optical switching device. Sol. Energy Mater., 20, 1990, 265–75.CrossRefGoogle Scholar
Shimanoe, K., Suetsugu, M., Miura, N. and Yamazoe, N.Bismuth oxide thin film as new electrochromic material. Solid State Ionics, 113–15, 1998, 415–19.CrossRefGoogle Scholar
Cazzanelli, E., Marino, S., Bruno, V., Castriosta, M., Scaramuzza, N., Strangi, G., Versace, C., Ceccato, R. and Carturan, G.Characterizations of mixed Bi/V oxide films, deposited via sol–gel route, used as electrodes in asymmetric liquid crystal cells. Solid State Ionics, 165, 2003, 201–8.CrossRefGoogle Scholar
Özer, N., Cronin, J. P. and Akyuz, S.Electrochromic performance of sol–gel-deposited CeO2 films. Proc. SPIE, 3788, 1999, 103–10.CrossRefGoogle Scholar
Porqueras, I., Person, C., Corbella, C., Vives, M., Pinyol, A. and Bertran, E.Characteristics of e-beam deposited electrochromic CeO2 thin films. Solid State Ionics, 165, 2003, 131–7.CrossRefGoogle Scholar
Porqueras, I., Person, C. and Bertran, E.Influence of the film structure on the properties of electrochromic CeO2 thin films deposited by e-beam PVD. Thin Solid Films, 447–8, 2004, 119–24.CrossRefGoogle Scholar
Azens, A., Vaivars, G., Kullman, L. and Granqvist, C. G.Electrochromism of Cr oxide films. Electrochim. Acta, 44, 1999, 3059–61.CrossRefGoogle Scholar
Cogan, S. F., Rauh, R. D., Klein, J. D., Nguyen, N. M., Jones, R. B. and Plante, T. D.Variable transmittance coatings using electrochromic lithium chromate and amorphous WO3 thin films. J. Electrochem. Soc., 144, 1997, 956–60.CrossRefGoogle Scholar
Besenhard, J. O. and Schöllhörn, R.Chromium oxides as cathodes for secondary high energy density lithium batteries. J. Electrochem. Soc., 124, 1977, 968–71.CrossRefGoogle Scholar
Arora, P., Zhang, D., Popov, B. N. and White, R. E.Chromium oxides and lithiated chromium oxides: promising cathode materials for secondary lithium batteries. Electrochem. Solid State Lett., 1, 198, 249–51.CrossRef
Takeda, Y., Tsuji, Y. and Yashamoto, O.Rechargeable lithium/chromium oxide cells. J. Electrochem. Soc., 131, 1984, 2006–9.CrossRefGoogle Scholar
Kullman, L., Azens, A., Vaivars, G. and Granqvist, C. G.Electrochromic devices incorporating Cr oxide and Ni oxide films: a comparison. Sol. Energy, 68, 2000, 517–22.CrossRefGoogle Scholar
Maruyama, T. and Arai, S.Electrochromic properties of cobalt oxide thin films prepared by chemical vapour deposition. J. Electrochem. Soc., 143, 1996, 1383–6.CrossRefGoogle Scholar
Burke, L. D. and Murphy, O. J.Electrochromic behaviour of oxide films grown on cobalt and manganese in base. J. Electroanal. Chem., 109, 1980, 373–7.CrossRefGoogle Scholar
Burke, L. D., Lyons, M. E. and Murphy, O. J.Formation of hydrous oxide films on cobalt under potential cycling conditions. J. Electroanal. Chem., 132, 1982, 247–61.CrossRefGoogle Scholar
Burke, L. D. and Murphy, O. J.Electrochromic behaviour of electrodeposited cobalt oxide films. J. Electroanal. Chem., 112, 1980, 379–82.CrossRefGoogle Scholar
Gorenstein, A., Polo Da Fonseca, C. N. and Torresi, R.Electrochromism in cobalt oxyhydroxide thin films. Proc. SPIE, 1536, 1991, 104–15.CrossRefGoogle Scholar
Cotton, F. A. and Wilkinson, G.Advanced Inorganic Chemistry, 4th edn, New York, Wiley, 1980, p. 767.Google Scholar
Unuma, H., Saito, Y., Watanabe, K. and Sugawara, M.Preparation of Co3O4 thin films by a modified chemical-bath method. Thin Solid Films, 468, 2004, 4–7.CrossRefGoogle Scholar
Bewick, A., Gutiérrez, C. and Larramona, G.An in-situ IR spectroscopic study of the anodic oxide film on cobalt in alkaline solutions. J. Electroanal. Chem., 333, 1992, 165–75.CrossRefGoogle Scholar
Wei, G. Diss. Abstr. Int. B., 52 (1991) 2247, as cited in Chem. Abs. 116: 116, 951d. Ph.D. thesis, Tufts University, MA, 1991.
Go, J.-Y., Pyun, S.-I. and Shin, H.-C.Lithium transport through the Li1 − δCoO2 film electrode prepared by RF magnetron sputtering. J. Electroanal. Chem., 527, 2002, 93–102.CrossRefGoogle Scholar
Polo da Fonseca, C. N., Paoli, M.-A. and Gorenstein, A.The electrochromic effect in cobalt oxide thin films. Adv. Mater., 3, 1991, 553–5.CrossRefGoogle Scholar
Polo da Fonseca, C. N., Paoli, M.-A. and Gorenstein, A.Electrochromism in cobalt oxide thin films grown by anodic electroprecipitation. Sol. Energy Mater. Sol. Cells, 33, 1994, 73–81.CrossRefGoogle Scholar
Svegl, F., Orel, B., Hutchins, M. G. and Kalcher, K.Structural and spectroelectrochemical investigations of sol–gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc., 143, 1996, 1532–9.CrossRefGoogle Scholar
Svegl, F., Orel, B., Bukovec, P., Kalcher, K. and Hutchins, M. G.Spectroelectrochemical and structural properties of electrochromic Co(Al)-oxide and Co(Al, Si)-oxide films prepared by the sol–gel route. J. Electroanal. Chem., 418, 1996, 53–66.CrossRefGoogle Scholar
Behl, W. K. and Toni, J. E.Anodic oxidation of cobalt in potassium hydroxide electrolytes. J. Electroanal. Chem., 31, 1971, 63–75.CrossRefGoogle Scholar
Benson, P., Briggs, G. W. D. and Wynne-Jones, W. F. K.The cobalt hydroxide electrode, I: structure and phase transitions of the hydroxides. Electrochim. Acta, 9, 1964, 275–80.CrossRefGoogle Scholar
Özer, N. and Tepehan, F.Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques. Sol. Energy Mater. Sol. Cells, 30, 1993, 13–26.CrossRefGoogle Scholar
Özer, N. and Tepehan, F.Sol–gel deposition of electrochromic copper oxide films. Proc. SPIE, 2017, 1993, 113–31.CrossRefGoogle Scholar
Ray, S. C.Preparation of copper oxide thin film by the sol–gel dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells, 68, 2001, 307–12.CrossRefGoogle Scholar
Richardson, T. J.New electrochromic mirror systems. Solid State Ionics, 165, 2003, 305–8.CrossRefGoogle Scholar
Gutiérrez, C. and Beden, B.UV-Visible differential reflectance spectroscopy of the electrochromic oxide layer on iron in 0.1 M NaOH. J. Electroanal. Chem., 293, 1990, 253–9.CrossRefGoogle Scholar
Burke, L. D. and Lyons, M. E. G.The formation and stability of hydrous oxide films of iron under potential cycling conditions in aqueous solution at high pH. J. Electroanal. Chem., 198, 1986, 247–68.CrossRefGoogle Scholar
Burke, L. D. and Murphy, O. J.Growth of an electrochromic film on iron in base under potential cycling conditions. J. Electroanal. Chem., 109, 1980, 379–83.CrossRefGoogle Scholar
Özer, N. and Tepehan, F.Optical and electrochemical characterisation of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells, 56, 1999, 141–52.CrossRefGoogle Scholar
Özer, N., Tepehan, F. and Tepehan, G.Preparation and optical properties of sol gel deposited electrochromic iron oxide films. Proc. SPIE, 3138, 1997, 31–9.CrossRefGoogle Scholar
Maruyama, T. and Kanagawa, T.Electrochromic properties of iron oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc., 143, 1996, 1675–8.CrossRefGoogle Scholar
Baba, N., Yoshino, T. and Watanabe, S. Preparation of electrochromic MnO2 thin film by electrodeposition. Seventh International Conference on Solid State Ionics, Japan, 1989, abs. 6pB–39.
Córdoba De Torresi, S. I. and Gorenstein, A.Electrochromic behaviour of manganese dioxide electrodes in slightly alkaline solutions. Electrochim. Acta, 37, 1992, 2015–19.CrossRefGoogle Scholar
López de Mishima, B. A., Ohtsuka, T. and Sata, N.In-situ Raman spectroscopy of manganese dioxide during the discharge process. J. Electroanal. Chem., 243, 1988, 219–23.CrossRefGoogle Scholar
Long, J. W., Qadir, L. R., Stroud, R. M. and Rolinson, D. R.Spectroelectrochemical investigations of cation-insertion reactions at sol–gel derived nanostructured, mesoporous thin films of manganese oxide. J. Phys. Chem. B, 105, 2001, 8712–17.CrossRefGoogle Scholar
Naghash, A. R. and Lee, J. Y.Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J. Power Sources, 85, 2000, 284–93.CrossRefGoogle Scholar
Demishima, B., Ohtsuka, T., Konno, H. and Sata, N.XPS study of the MnO2 electrode in borate solution during the discharge process. Electrochim. Acta, 36, 1991, 1485–9.CrossRefGoogle Scholar
Ma, Y.-P., Yu, P. C. and Lampert, C. M.Development of laminated nickel/manganese and nickel/niobium oxide electrochromic devices. Proc. SPIE, 1536, 1991, 93–103.CrossRefGoogle Scholar
Bueno, P. R., Avellaneda, C. O., Faria, R. C. and Bulhões, L. O. S.Electrochromic properties of undoped and lithium doped Nb2O5 films prepared by the sol–gel method. Electrochim. Acta, 46, 2001, 2113–18.CrossRefGoogle Scholar
Aegerter, M. A.Sol–gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol. Energy Mater. Sol. Cells, 68, 2001, 401–22.CrossRefGoogle Scholar
Maček, M. and Orel, B.Electrochromism of sol–gel derived niobium oxide films. Sol. Energy Mater. Sol. Cells, 54, 1998, 121–30.CrossRefGoogle Scholar
Maček, M. and Orel, B.Electrochromism of sol–gel derived niobium oxide films. Turk. J. Chem, 22, 1998, 67–72.Google Scholar
Lee, G. R. and Crayston, J. A.Sol–gel processing of transition-metal alkoxides for electronics. Adv. Mater., 5, 1993, 434–42.CrossRefGoogle Scholar
Lee, G. R. and Crayston, J. A.Electrochromic Nb2O5 and Nb2O5/silicone composite thin films prepared by sol–gel processing. J. Mater. Chem., 1, 1991, 381–6.CrossRefGoogle Scholar
Özer, N., Barreto, T., Buyuklimanli, T. and Lampert, C. M.Characterization of sol–gel deposited niobium pentoxide films for electrochromic devices. Sol. Energy Mater. Sol. Cells, 36, 1995, 433–43.CrossRefGoogle Scholar
Reichman, B. and Bard, A. J.Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solution. J. Electrochem. Soc., 127, 1980, 241–2.CrossRefGoogle Scholar
Maranhão, S. L. D. A. and Torresi, R. M.Electrochemical and chromogenics kinetics of lithium intercalation in anodic niobium oxide films. Electrochim. Acta, 43, 1998, 257–64.CrossRefGoogle Scholar
Maranhão, S. L. D. A. and Torresi, R. M.Filmes de óxidos anódicos de nióbio: efeito eletrocrômico e cinética da reação de eletro-intercalação. Quim. Nova, 21, 1998, 284–8.CrossRefGoogle Scholar
Gomes, M. A. B., Bulhões, L. O. S., Castro, S. C. and Damiao, A. J.The electrochromic process at Nb2O5 electrode prepared by thermal oxidation of niobium. J. Electrochem. Soc., 137, 1990, 3067–71.CrossRefGoogle Scholar
Gomes, M. A. B. and Bulhões, L. O. S.Diffusion coefficient of H+ at Nb2O5 layers prepared by thermal oxidation of niobium. Electrochim. Acta, 35, 1990, 765–8.CrossRefGoogle Scholar
Maruyama, T. and Arai, K.Electrochromic properties of niobium oxide thin films prepared by radio-frequency magnetron sputtering method. Appl. Phys. Lett., 63, 1993, 869–70.CrossRefGoogle Scholar
Rosario, A. V. and Pereira, E. C.Optimisation of the electrochromic properties of Nb2O5 thin films produced by sol–gel route using factorial design. Sol. Energy Mater. Sol. Cells, 71, 2002, 41–50.CrossRefGoogle Scholar
Bolzán, A. Z. and Arvia, A. J.The electrochemical behaviour of hydrous palladium oxide layers formed at high positive potentials in different electrolyte solutions. J. Electroanal. Chem., 322, 1992, 247–65.CrossRefGoogle Scholar
Thomas, G. R. and Owen, J. R.Rare earth oxides in electrochromic windows. Solid State Ionics, 53–6, 1992, 513–19.CrossRefGoogle Scholar
Hartridge, A., Krishna, Ghanashyam M. and Bhattacharya, A. K.A study of nanocrystalline CeO2/PrOx optoionic thin films: temperature and oxygen vacancy dependence. Mater. Sci. Eng. B, 57, 1999, 173–8.CrossRefGoogle Scholar
Burke, L. D. and O'Sullivan, E. J. M.Reactivity of hydrous rhodium oxide films in base. J. Electroanal. Chem., 129, 1981, 133–48.CrossRefGoogle Scholar
Burke, L. D. and O'Sullivan, E. J. M.Enhanced oxide growth at a rhodium surface in base under potential cycling conditions. J. Electroanal. Chem., 93, 1978, 11–18.CrossRefGoogle Scholar
Wang, H., Yan, M. and Jiang, Z.Electrochromic properties of rhodium oxide films prepared by a sol–gel method. Thin Solid Films, 401, 2001, 211–15.CrossRefGoogle Scholar
Gottesfeld, S.The anodic rhodium oxide film: a two-colour electrochromic system. J. Electrochem. Soc., 127, 1980, 272–7.CrossRefGoogle Scholar
Lee, S.-H., Liu, P., Cheong, H. M., Tracy, C. E. and Deb, S. K.Electrochromism of amorphous ruthenium oxide thin films. Solid State Ionics, 165, 2003, 217–21.CrossRefGoogle Scholar
Burke, L. D. and Whelan, D. P.The behaviour of ruthenium anodes in base. J. Electroanal. Chem., 103, 1979, 179–87.CrossRefGoogle Scholar
Hutchins, M. G., Butt, N. S., Topping, A. J., Gallego, J. M., Milne, P. E., Jeffrey, D. and Brotherton, I. D.Tantalum oxide thin film ionic conductors for monolithic electrochromic devices. Proc. SPIE, 4458, 2001, 120–7.CrossRefGoogle Scholar
Klingler, M., Chu, W. F. and Weppner, W.Three-layer electrochromic system. Sol. Energy Mater. Sol. Cells, 39, 1995, 247–55.CrossRefGoogle Scholar
Masing, L., Orme, J. E. and Young, L.Optical properties of anodic film oxide films on tantalum, niobium, and tantalum + niobium alloys, and the optical constants of tantalum. J. Electrochem. Soc., 108, 1961, 428–38.CrossRefGoogle Scholar
Özer, N., He, Y. and Lampert, C. M.Ionic conductivity of tantalum oxide films prepared by sol–gel process for electrochromic devices. Proc. SPIE, 2255, 1994, 456–66.CrossRefGoogle Scholar
Ahn, K.-S., Nah, Y.-C. and Sung, Y.-E.Effect of interfacial property on electrochromic response speed of Ta2O5/NiO and Ta2O5/Ni(OH) 2. Solid State Ionics, 165, 2003, 155–60.CrossRefGoogle Scholar
Garikepati, P. and Xue, T.Study of the electrochromic film-solid electrolyte film interface (WO3/Ta2O5) by impedance measurements. Sol. Energy Mater. Sol. Cells, 25, 1992, 105–11.CrossRefGoogle Scholar
Hensler, D. H., Cuthbert, J. D., Martin, R. J. and Tien, P. K.Optical propagation in sheet and pattern generated films of Ta2O5. Appl. Opt., 10, 1971, 1037–42.CrossRefGoogle Scholar
Ord, J. L. and Wang, W. P.Optical anisotropy and electrostriction in the anodic oxide of tantalum. J. Electrochem. Soc., 130, 1983, 1809–14.CrossRefGoogle Scholar
Ord, J. L., Hopper, M. A. and Wang, W. P.Field-dependence of the dielectric constant during anodic oxidation of tantalum, niobium, and tungsten. J. Electrochem. Soc., 119, 1972, 439–45.CrossRefGoogle Scholar
Tuller, H. L. and Moon, P. K.Fast ion conductors: future trends. Mater. Sci. Eng. B, 1, 1988, 171–91.CrossRefGoogle Scholar
Sone, Y., Kishimoto, A. and Kudo, T.Amorphous tantalum oxide proton conductor derived from peroxo-polyacid and its application for EC device. Solid State Ionics, 70–1, 1994, 316–20.CrossRefGoogle Scholar
Nagai, J., McMeeking, G. D. and Saitoh, Y.Durability of electrochromic glazing. Sol. Energy Mater. Sol. Cells, 56, 1999, 309–19.CrossRefGoogle Scholar
Hale, J. S., DeVries, M., Dworak, B. and Woollam, J. A.Visible and infrared optical constants of electrochromic materials for emissivity modulation applications. Thin Solid Films, 313–14, 1998, 205–9.CrossRefGoogle Scholar
Hale, J. S. and Woollam, J. A.Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 339, 1999, 174–80.CrossRefGoogle Scholar
Matsuda, S. and Sugimoto, K.Ellipsometric analysis of changes in surface oxide films on tantalum during anodic and cathodic polarization. J. Jpn. Inst. Met., 49, 1985, 224–30 [in Japanese].CrossRefGoogle Scholar
Fu, Z.-W., and Qui, Q.-Z.Pulsed laser deposite Ta2O5 thin films as an electrochromic material. Electrochem. Solid-State Lett., 2, 1999, 600–1.CrossRefGoogle Scholar
Isidorsson, J. and Granqvist, C. G.Electrochromism of Li–intercalated Sn oxide films made by sputtering. Sol. Energy Mater. Sol. Cells, 44, 1996, 375–81.CrossRefGoogle Scholar
Isidorsson, J., Granqvist, C. G., Häggström, L. and Nordström, E. Electrochromism in lithiated Sn oxide: Mössbauer spectroscopy data on valence state changes. J. Appl. Phys., 80, 1996, 2367–71.CrossRefGoogle Scholar
Yonghong, Y., Jiayu, Z., Peifu, G., Xu, L. and Jinfa, T.Electrochromism of titanium oxide thin film. Thin Solid Films, 298, 1997, 197–9.CrossRefGoogle Scholar
Fu, Z., Kong, J., Qin, Q. and Tian, Z.In situ spectroelectrochemical behaviour of nanocrystalline TiO2 thin film electrode fabricated by pulsed laser ablation. Chem. China, 42, 1999, 493–500.CrossRefGoogle Scholar
Tacconi, N. R., Chenthamarakshan, C. R., Wouters, K. L., MacDonnell, F. M., and Rajeshwar, K.Composite WO3–TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. J. Electroanal. Chem., 566, 2004, 249–56.CrossRefGoogle Scholar
Ord, J. L., DeSmet, D. J. and Beckstead, D. J.Electrochemical and optical properties of anodic oxide films on titanium. J. Electrochem. Soc., 136, 1989, 2178–84.CrossRefGoogle Scholar
Ottaviani, M., Panero, S., Morizilli, S., Scrosati, B. and Lazzari, M.The electrochromic characteristics of titanium oxide thin film. Solid State Ionics, 20, 1986, 197–202.CrossRefGoogle Scholar
Ohzuki, T. and Hirai, T.An electrochromic display based on titanium. Electrochim. Acta, 27, 1982, 1263–6.Google Scholar
Bonhôte, P., Gogniat, E., Grätzel, M. and Ashrit, P. V.Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films, 350, 1999, 269–75.CrossRefGoogle Scholar
Yoshimura, T., Miki, T. and Tanemura, S.TiO2 electrochromic thins films by reactive direct current magnetron sputtering. J. Vac. Sci. Technol. A, 15, 1997, 2673–6.CrossRefGoogle Scholar
Rousselot, C., Chappé, J.-M., Martin, N. and Terwange, G.Properties and electrochromic performance of titanium oxynitride thin films prepared by reactive sputtering. Proc. Electrochem. Soc., 2003–22, 2003, 68–79.Google Scholar
Fang, G. J., Yao, K.-L. and Liu, Z.-L.Fabrication and electrochromic properties of double layer WO3(V)/V2O5(Ti) thin films prepared by pulsed laser ablation technique. Thin Solid Films, 394, 2001, 63–70.CrossRefGoogle Scholar
Rougier, A. and Blyr, A.Electrochromic properties of vanadium tungsten oxide thin films grown by pulsed laser deposition. Electrochim. Acta, 46, 2001, 1945–50.CrossRefGoogle Scholar
Fang, J. G., Liu, Y. H. and Yao, K. L.Synthesis and structural, electrochromic characterization of pulsed laser deposition of vanadium oxide thin films. J. Vac. Sci. Technol. A, 19, 2001, 887–92.CrossRefGoogle Scholar
Fujita, Y., Miyazaki, K. and Tatsuyama, C.On the electrochromism of evaporated V2O5 films. Jpn. J. Appl. Phys., 24, 1985, 1082–6.CrossRefGoogle Scholar
Julien, C., Guesdon, J. P., Gorenstein, A., Khelfa, A. and Ivanova, T.Growth of V2O5 flash-evaporated films. J. Mater. Sci. Lett., 14, 1995, 934–6.CrossRefGoogle Scholar
Aita, C. R., Liu, Y., Kao, M. L. and Hansen, S. D.Optical behaviour of sputter-deposited vanadium pentoxide. J. Appl. Phys., 60, 1986, 749–53.CrossRefGoogle Scholar
Guan, Z. S., Yao, J. N., Yang, Y. A. and Loo, B. H.Electrochromism of annealed vacuum-evaporated V2O5 films. J. Electroanal. Chem., 443, 1998, 175–9.CrossRefGoogle Scholar
Ord, J. L., Bishop, S. D. and DeSmet, D. J.An optical study of hydrogen insertion in the anodic oxide of vanadium. J. Electrochem. Soc., 138, 1991, 208–14.CrossRefGoogle Scholar
Znaidi, Z., Baffier, N. and Lemordant, D.Kinetics of the H+/M+ ion exchange in V2O5 xerogel. Solid State Ionics, 28–30, 1988, 1750–5.CrossRefGoogle Scholar
Livage, J.Vanadium pentoxide gels. Chem. Mater., 3, 1991, 578–93.CrossRefGoogle Scholar
Livage, J.Sol–gel chemistry and electrochemical properties of vanadium oxide gels. Solid State Ionics, 86–8, 1996, 935–42.CrossRefGoogle Scholar
Livage, J.Optical and electrical properties of vanadium oxides synthesized from alkoxides. Coord. Chem. Rev., 190–2, 1999, 391–403.CrossRefGoogle Scholar
Vroon, Z. A. E. P. and Spee, C. I. M. A.Sol–gel coatings on large area glass sheets for electrochromic devices. J. Non-Cryst. Solids, 218, 1997, 189–95.CrossRefGoogle Scholar
Stewart, O., Rodriguez, J., Williams, K. B., Reck, G. P., Malani, N. and Proscia, J. W.Chemical vapor deposition of vanadium oxide thin films. Mater. Res. Soc. Symp. Proc., 335, 1994, 329–33.CrossRefGoogle Scholar
Shimizu, Y., Nagase, K., Miura, N. and Yamazoe, N.Electrochromic properties of spin-coated V2O5 thin films. Solid State Ionics, 53–6, 1992, 490–5.CrossRefGoogle Scholar
Shimizu, Y., Nagase, K., Muira, N. and Yamazoe, N.Electrochromic properties of vanadium pentoxide thin films prepared by new wet process. Appl. Phys. Lett., 60, 1992, 802–4.Google Scholar
Liu, P., Lee, S.-H., Tracy, C. E., Turner, J. A., Pitt, J. R. and Deb, S. K.Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide. Solid State Ionics, 165, 2003, 223–8.CrossRefGoogle Scholar
Burke, L. D. and O'Sullivan, E. J. M.Electrochromism in electrodeposited vanadium oxide films. J. Electroanal. Chem., 111, 1980, 383–4.CrossRefGoogle Scholar
Gavrilyuk, A. I. and Chudnovskii, F. A.Electrochromism in vanadium pentoxide films. Pis'ma. Zh. Tekh. Fiz, 3, 1977, 174–7; also available as: Sov. Tech. Phys. Lett., 3, 1977, 69–70.Google Scholar
Hub, S., Trenchant, A. and Messina, R.X-Ray investigations on electroformed LixV2O5 bronzes. Electrochim. Acta, 33, 1988, 997–1002.CrossRefGoogle Scholar
Gavrilyuk, V. I. and Plakhotnik, V. N.Electrochromism of thin-films of vanadium(V) and tungsten(III) oxides in the system LiBF4–γ-butyrolactone. Vopr. Khim. Khim. Technol., 89, 1989, 23–26 [in Russian], as cited in Chem. Abs., 113: 122,883.Google Scholar
Dickens, P. G., Hibble, S. J. and Jarman, R. H.Ion insertion at a vanadium pentoxide cathode. J. Electrochem. Soc., 130, 1983, 1787–8.CrossRefGoogle Scholar
Meulenkamp, E. A., Klinken, W. and Schlatmann, A. R.In-situ X-ray diffraction of Li intercalation in sol–gel V2O5 films. Solid State Ionics, 126, 1999, 235–44.CrossRefGoogle Scholar
Benmoussa, M., Outzourhit, A., Bennouna, A. and Ameziane, E. L.Electrochromism in sputtered V2O5 thin films: structural and optical studies. Thin Solid Films, 405, 2002, 11–16.CrossRefGoogle Scholar
Dickens, P. G. and Reynolds, G. J.Transport and equilibrium properties of some oxide insertion compounds. Solid State Ionics, 5, 1981, 331–4.CrossRefGoogle Scholar
Bachmann, H. G., Ahmed, F. R. and Barnes, W. H.The crystal structure of vanadium pentoxide. Z. Kristall. Bd., 115, 1961, 110–31.CrossRefGoogle Scholar
Murphy, D. W., Christian, P. A., Disalvo, R. J. and Waszczak, J. V.Lithium incorporation by vanadium pentoxide. Inorg. Chem., 18, 1979, 2800–3.CrossRefGoogle Scholar
Bach, S., Pereira-Ramos, J. P., Baffier, N. and Messina, R.A thermodynamic and kinetic study of electrochemical lithium intercalation in Na0.33V2O5 bronze prepared by a sol–gel process. J. Electrochem. Soc., 137, 1990, 1042–8.CrossRefGoogle Scholar
Nabavi, M., Sanchez, C., Taulelle, F. and Livage, J.Electrochemical properties of amorphous V2O5. Solid State Ionics, 28–30, 1988, 1183–6.CrossRefGoogle Scholar
Wu, G., Du, K., Xia, C., Kun, X., Shen, J., Zhou, B. and Wang, J.Optical absorption edge evolution of vanadium pentoxide films during lithium intercalation. Thin Solid Films, 485, 2005, 284–9.CrossRefGoogle Scholar
Murphy, D. W. and Christian, P. A.Solid state electrodes for high energy batteries. Science, 205, 1979, 651–6.CrossRefGoogle ScholarPubMed
Ashrit, P. V., Benaissa, K., Bader, G., Girouard, F. E. and Truong, V.-V. Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system. Solid State Ionics, 59, 1993, 47–57.CrossRefGoogle Scholar
Ashrit, P. V., Girouard, F. E. and Truong, V.-V. Fabrication and testing of an all-solid state system for smart window application. Solid State Ionics, 89, 1996, 65–73.CrossRefGoogle Scholar
Liu, G. and Richardson, T. J.Sb–Cu–Li electrochromic mirrors. Sol. Energy Mater. Sol. Cells, 86, 2005, 113–21.CrossRefGoogle Scholar
Zhang, Q., Wu, G., Zhou, B., Shen, J. and Wang, J.Electrochromic properties of sol–gel deposited V2O5 and TiO2–V2O5 binary thin films. J. Mater. Sci. Technol., 17, 2001, 417–20.Google Scholar
Andersson, A. M., Granqvist, C. G. and Stevens, J. R.Towards an all-solid-state smart window: electrochromic coatings and polymer ion conductors. Proc. SPIE, 1016, 1988, 41–9.CrossRefGoogle Scholar
Gustafsson, J. C., Inganas, O. and Andersson, A. M.Conductive polyheterocycles as electrode materials in solid state electrochromic devices. Synth. Met., 62, 1994, 17–21.CrossRefGoogle Scholar
Babulanam, S. M., Eriksson, T. S., Niklasson, G. A. and Granqvist, C. G.Thermochromic VO2 films for energy-efficient windows. Sol. Energy Mater., 16, 1987, 347–63.CrossRefGoogle Scholar
Hakim, M. O., Babulanam, S. M. and Granqvist, C. G.Electrochemical properties of thin VO2 films on polyimide substrates. Thin Solid Films, 158, 1988, L49–52.CrossRefGoogle Scholar
Khan, M. S. R., Khan, K. A., Estrada, W. and Granqvist, C. G.Electrochromism and thermochromism of LixVO2 thin films. J. Appl. Phys., 69, 1991, 3231–4.CrossRefGoogle Scholar
Takahashi, I., Hibino, M. and Kudo, T.Thermochromic properties of double-doped VO2 thin films fabricated from polyvanadate-based solutions. Proc. SPIE, 3788, 1999, 26–33.CrossRefGoogle Scholar
Oliveira, H. P., Graeff, C. F. O., Brunello, C. A. and Guerra, E. M.Electrochromic and conductivity properties: a comparative study between melanin-like/V2O5. nH2O and polyaniline/V2O5. nH2O hybrid materials. J. Non-Cryst. Solids, 273, 2000, 193–7.CrossRefGoogle Scholar
Denesuk, M. and Uhlmann, D. R.Site-saturation model for the optical efficiency of tungsten oxide-based devices. J. Electrochem. Soc., 143, 1996, L186–8.CrossRefGoogle Scholar
Hurita, Y., Kitao, M. and Yamada, W.Absorption bands of electrochemically coloured films of WO3, MoO3 and MocrystallineW(1 −crystalline)O3. Jpn. J. Appl. Phys., 23, 1984, 1624–7.CrossRefGoogle Scholar
Driel, F., Decker, F., Simone, F. and Pennisi, A.Charge and colour diffusivity from PITT in electrochromic LixWO3 sputtered films. J. Electroanal. Chem., 537, 2002, 125–34.CrossRefGoogle Scholar
Gérand, B. and Seguin, L.The soft chemistry of molybdenum and tungsten oxides: a review. Solid State Ionics, 84, 1996, 199–204.CrossRefGoogle Scholar
Molnar, B. J., Haranahalli, A. R. and Dove, B. D.Electrochromism in WO3 films with BaO additions. J. Vac. Sci. Technol. A, 15, 1978, 161–3.Google Scholar
Gao, G., Xu, L., Wang, W., An, W. and Qiu, Y.Electrochromic ultra-thin films based on cerium polyoxometalate. J. Mater. Chem., 14, 2004, 2024–9.CrossRefGoogle Scholar
Lee, S.-H. and Joo, S.-K. Electrochromic behavior of Ni–W oxide electrodes. Sol. Energy Mater. Sol. Cells, 39, 1995, 155–66.CrossRefGoogle Scholar
Shen, P. K., Syed-Bokhari, J. K. and Tseung, A. C. C.Performance of electrochromic tungsten trioxide films doped with cobalt or nickel. J. Electrochem. Soc., 138, 1991, 2778–83.CrossRefGoogle Scholar
Pennisi, A. and Simone, F.An electrochromic device working in absence of ion storage counter-electrode. Sol. Energy Mater. Sol. Cells, 39, 1995, 333–40.CrossRefGoogle Scholar
Faughnan, B. W. and Crandall, R. S.Optical properties of mixed-oxide WO3/MoO3 electrochromic films. Appl. Phys. Lett., 31, 1977, 834–6.CrossRefGoogle Scholar
Yamada, S. and Kitao, M.Modulation of absorption spectra by the use of mixed films of MocrystallineW1 −crystallineO3. Proc. SPIE, IS4, 1990, 246–59.Google Scholar
Pennisi, A., Simone, F. and Lampert, C. M.Electrochromic properties of tungsten–molybdenum oxide electrodes. Sol. Energy Mater. Sol. Cells, 28, 1992, 233–47.CrossRefGoogle Scholar
Patil, P. R. and Patil, P. S.Preparation of mixed oxide MoO3–WO3 thin films by spray pyrolysis technique and their characterisation. Thin Solid Films, 382, 2001, 13–22.CrossRefGoogle Scholar
Genin, C., Driouiche, A., Gerand, B. and Figlarz, M.Hydrogen bronzes of new oxides of the WO3–MoO3 system with hexagonal, pyrochlore and ReO3-type structures. Solid State Ionics, 53–6, 1992, 315–23.CrossRefGoogle Scholar
Baeck, S.-H., Jaramillo, T. F., Jeong, D. H. and McFarland, E. W.Parallel synthesis and characterization of photoelectrochemically and electrochromically active tungsten–molybdenum oxides. J. Chem. Soc., Chem. Commun., 2004, 390–1.CrossRefGoogle ScholarPubMed
Ivanova, T., Gesheva, K. A., Ganchev, M. and Tzvetkova, E.Electrochromic behavior of CVD molybdenum oxide and Mo–W mixed-oxide thin films. J. Mater. Sci.: Mater. Electron., 14, 2003, 755–6.Google Scholar
Visco, S. J., Liu, M., Doeff, M. M., Ma, Y. P., Lampert, C. and Da Jonghe, L. C.Polyorganodisulfide electrodes for solid-state batteries and electrochromic devices. Solid State Ionics, 60, 1993, 175–87.CrossRefGoogle Scholar
Hiruta, Y., Kitao, M. and Yamada, M.Absorption bands of electrochemically-colored films of WO3, MoO3 and MocrystallineW1 −crystallineO3. Jpn. J. Appl. Phys., 23, 1984, 1624–7.CrossRefGoogle Scholar
Kitao, M., Yamada, M., Hiruta, Y., Suzuki, N. and Urabe, K.Electrochromic absorption spectra modulated by the composition of WO3/MoO3 mixed films. Appl. Surf. Sci., 33–4, 1985, 812–17.Google Scholar
Gillet, P. A., Fourquet, J. L. and Bohnke, O.Niobium tungsten titanium oxides: from ‘soft chemistry’ precursors to electrochromic thin layer materials. Mater. Res. Bull., 27, 1992, 1145–52.CrossRefGoogle Scholar
Pehlivan, E., Tepehan, F. Z. and Tepehan, G. G.Comparison of optical, structural and electrochromic properties of undoped and WO3-doped Nb2O5 thin films. Solid State Ionics, 165, 2003, 105–10.CrossRefGoogle Scholar
Sun, D. L., Heusing, S. and Aegerter, M. A.Electronic properties of Nb2O5:Mo, WO3 and (CeO2) x(TiO2) 1 −x sol–gel coatings and devices using dry and wet electrolytes. Proc. Electrochem. Soc., 2003–22, 2003, 119–29.Google Scholar
Lee, S.-H., Cheong, H. M., Park, N.-G., Tracy, C. E., Mascarenhas, A., Benson, D. K. and Deb, S. K.Raman spectroscopic studies of Ni–W oxide thin films. Solid State Ionics, 140, 2001, 135–9.CrossRefGoogle Scholar
Gao, W., Lee, S.-H., Benson, D. K. and Branz, H. M.Novel electrochromic projection and writing device incorporating an amorphous silicon carbide photodiode. J. Non-Cryst. Solids, 266–9, 2000, 1233–7.CrossRefGoogle Scholar
Cazzanelli, E., Vinegoni, C., Mariotti, G., Kuzmin, A. and Purans, J.Changes of structural, optical and vibrational properties of WO3 powders after milling with ReO3. Proc. Electrochem. Soc., 96–24, 1996, 260–274.Google Scholar
Özkan Zayim, E., Türham, I. and Tepehan, F. Z.Sol–gel made tantalum oxide doped tungsten oxide films. Proc. Electrochem. Soc., 2003–22, 2003, 40–8.Google Scholar
Aegerter, M. A., Avellaneda, C. O., Pawlicka, A. and Atik, M.Electrochromism in materials prepared by the sol–gel process. J. Sol–Gel Sci. Technol., 8, 1997, 689–96.CrossRefGoogle Scholar
Yebka, B., Pecquenard, B., Julien, C. and Livage, J.Electrochemical Li+ insertion in WO3 −xTiO2 mixed oxides. Solid State Ionics, 104, 1997, 169–75.CrossRefGoogle Scholar
Macêdo, M. A. and Aegerter, M. A.Sol–gel electrochromic device. J. Sol–Gel Sci. Technol., 2, 1994, 667–71.CrossRefGoogle Scholar
Tacconi, N. R., Chenthamarakshan, C. R. and Rajeshwar, K.Electrochromic behaviour of WO3, TiO2 and WO3–TiO2 composite films prepared by pulsed electrodeposition. Proc. Electrochem. Soc., 2003–22, 2003, 28–39.Google Scholar
Göttsche, J. F., Hinsch, A. and Wittwer, V.Electrochromic and optical properties of mixed WO3–TiO2 thin films produced by sputtering and sol–gel technique. Proc. SPIE, 1728, 1992, 13–25.CrossRefGoogle Scholar
Patil, P. S., Mujawar, S. H., Inamdar, A. I. and Sadale, S. B.Structural, electrical and optical properties of TiO2 doped WO3 thin films. Appl. Surf. Sci., 250, 2005, 117–23.CrossRefGoogle Scholar
Lourenco, A., Masetti, E. and Decker, F.Electrochemical and optical characterization of RF-sputtered thin films of vanadium–nickel mixed oxides. Electrochim. Acta, 46, 2001, 2257–62.CrossRefGoogle Scholar
Pan, B. H. and Lee, J. Y.Electrochromism of electrochemically codeposited composites of phosphomolybdic acid and tungsten trioxide. J. Electrochem. Soc., 143, 1996, 2784–9.CrossRefGoogle Scholar
Deb, S. K. and Witzke, H.Abstract G7, Nineteenth Electronics Materials Conference, Cornell, New York 1977; as cited in Dautremont-Smith, W. C. Transition metal oxide electrochromic materials and displays: a review; part 1: oxides with cathodic coloration. Displays, 3, 1982, 3–22.Google Scholar
Marcel, C., Hegde, M. S., Rougier, A., Maugy, C., Guery, C. and Tarascon, J.-M. Electrochromic properties of antimony tin oxide (ATO) thin films synthesized by pulsed laser deposition. Electrochim. Acta, 46, 2001, 2097–104.CrossRefGoogle Scholar
Naghavi, N., Marcel, C., Dupont, L., Leriche, J.-B. and Tarascon, J.-M. On the electrochromic properties of antimony–tin oxide thin films deposited by pulsed laser deposition. Solid State Ionics, 156, 2003, 463–74.CrossRefGoogle Scholar
Yoshino, T. and Masuda, H.Characterization of nano-structured thin films of electrodeposited Ce–Co mixed oxides for EC devices. Solid State Ionics, 165, 2003, 123–9.CrossRefGoogle Scholar
Veszelei, M., Kullman, L., Mattsson, Strømme M., Azens, A. and Granqvist, C. G.Optical and electrochemical properties of Li+ intercalated Zr–Ce oxide and Hf–Ce oxide. J. Appl. Phys., 833, 1998, 1670–6.CrossRefGoogle Scholar
Štangar, U. L., Opara, U. and Orel, B.Structural and electrochemical properties of sol–gel derived Mo:CeO2, Si:Mo:CeO2 and Si:CeO2 nanocrystalline films for electrochromic devices. J. Sol–Gel Sci. Technol., 8, 1997, 751–8.CrossRefGoogle Scholar
Oliveira, S., Faria, R. C., Terezo, A. J., Pereira, E. C. and Bulhôes, L. O. S.The cerium addition effect on the electrochemical properties of niobium pentoxide electrochromic thin films. Proc. Electrochem. Soc., 96–24, 1996, 106–18.Google Scholar
Zhu, B., Luo, Z. and Xia, C.Transparent conducting CeO2–SiO2 thin films. Mater. Res. Bull., 34, 1999, 1507–12.CrossRefGoogle Scholar
Rosario, A. V. and Pereira, E. C.Comparison of the electrochemical behavior of CeO2–SnO2 and CeO2–TiO2 electrodes produced by the Pechini method. Thin Solid Films, 410, 2002, 1–7.CrossRefGoogle Scholar
Keomany, D., Petit, J.-P. and Deroo, D.Electrochemical insertion in sol–gel made CeO2–TiO2 from lithium conducting polymer electrolyte: relation with the material structure. Sol. Energy Mater. Sol. Cells, 36, 1995, 397–408.CrossRefGoogle Scholar
Purans, J., Azens, A. and Granqvist, C. G.X-Ray absorption study of Ce–Ti oxide films. Electrochim. Acta, 46, 2001, 2055–8.CrossRefGoogle Scholar
Mattson, M. S., Azens, A., Niklasson, G. A., Granqvist, C. G. and Purans, J.Li intercalation in transparent Ti–Ce oxide films: energetics and ion dynamics. J. Appl. Phys., 81, 1997, 6432–7.CrossRefGoogle Scholar
Kim, Y. I., Yoon, J. B., Choy, J. H., Campet, G., Camino, D., Portier, J. and Salardenne, J.RF sputtered SnO2, Sn-doped In2O3 and Ce-doped TiO2 films as transparent counter electrodes for electrochromic window. Bull. Korean Chem. Soc., 19, 1998, 107–9.Google Scholar
Tavcar, G., Kalcher, K. and Ogorvec, B.Applicability of a sol–gel derived CeO2–TiO2 thin film electrode as an amperometric sensor in flow injection. Analyst, 122, 1997, 371–6.CrossRefGoogle Scholar
Camino, D., Deroo, D., Salardenne, J. and Treuil, N.(CeO2) x–(TiO2) 1 −x: counter electrode materials for lithium electrochromic devices. Sol. Energy Mater. Sol. Cells, 39, 1995, 349–66.CrossRefGoogle Scholar
von Rottkay, K., Richardson, T., Rubin, M., Slack, J. and Kullman, L.Influence of stoichiometry on electrochromic cerium–titanium oxide compounds. Solid State Ionics, 113–15, 1998, 425–30.CrossRefGoogle Scholar
Kullman, L., Azens, A. and Granqvist, C. G.Decreased electrochromism in Li-intercalated Ti oxide films containing La, Ce, and Pr. J. Appl. Phys., 81, 1997, 8002–10.CrossRefGoogle Scholar
Kullman, L., Veszelei, M., Ragan, D. D., Isidorsson, J., Vaivars, G., Kanders, U., Azens, A., Schelle, S., Hjorvarsson, B. and Granqvist, C. G.Cerium-containing counter electrodes for transparent electrochromic devices. Proc. SPIE, 2968, 1997, 219–24.CrossRefGoogle Scholar
Azens, A., Kullman, L., Ragan, D. D., Granqvist, C. G., Hjovarsson, B. and Vaivars, G.Optical and electrochemical properties of dc magnetron sputtered Ti–Ce oxide films. Appl. Phys. Lett., 68, 1996, 3701–3.CrossRefGoogle Scholar
Granqvist, C. G., Azens, A., Kullman, L. and Rönnow, D.Progress in smart windows research: improved electrochromic W oxide films and transparent Ti–Ce oxide counter electrodes. Renewable Energy, 8, 1996, 97–106.CrossRefGoogle Scholar
Macrelli, G. and Poli, E.Mixed cerium/titanium and cerium/zirconium oxides as thin film counter electrodes for all solid state electrochromic transmissive devices. Electrochim. Acta, 44, 1999, 3137–47.CrossRefGoogle Scholar
Janke, N., Bieberle, A. and Weißmann, R.Characterization of sputter-deposited WO3 and CeO2 −x–TiO2 thin films for electrochromic applications. Thin Solid Films, 392, 2001, 134–41.CrossRefGoogle Scholar
Verma, A., Samanta, S. B., Mehra, N. C., Bakhshi, A. K. and Agnihotry, S. A.Sol–gel derived nanocrystalline CeO2–TiO2 coatings for electrochromic windows. Sol. Energy Mater. Sol. Cells, 86, 2005, 85–103.CrossRefGoogle Scholar
Veszelei, M., Kullman, L., Granqvist, C. G., Rottkay, K. and Rubin, M.Optical constants of sputter-deposited Ti–Ce and Zr–Ce oxide films. Appl. Opt., 37, 1998, 5993–6001.CrossRefGoogle ScholarPubMed
Veszelei, M., Kullman, L., Azens, A., Granqvist, C. G. and Hjörvarsson, B.Transparent ion intercalation films of Zr–Ce. J. Appl. Phys., 81, 1997, 2024–6.CrossRefGoogle Scholar
Masetti, E., Varsano, F. and Decker, F.Sputter-deposited cerium vanadium mixed oxide as counter-electrode for electrochromic devices. Electrochim. Acta, 44, 1999, 3117–19.CrossRefGoogle Scholar
Flamini, C., Ciccioli, A., Traverso, P., Gnecco, F., Guidoni, Giardini A. and Mele, A.Laser-induced evaporation, reactivity and deposition of ZrO2, CeO2, V2O5 and mixed Ce-V oxides. Appl. Surf. Sci., 168, 2000, 104–7.CrossRefGoogle Scholar
Kaneko, Y. and Chen, W.Electrochemical synthesis of electrochromic Ce–V oxide films in NH4HSO4 melts. J. Electroanal. Chem., 559, 2003, 87–90.CrossRefGoogle Scholar
Orel, Crnjak Z., Gaberšček, M. and Turković, A.Electrical and spectroscopic characterisation of nanocrystalline V/Ce oxides. Sol. Energy Mater. Sol. Cells, 86, 2005, 19–32.CrossRefGoogle Scholar
Opara Krašovec, U., Orel, B., Surca, A., Bukovec, N. and Reisfeld, R.Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol–gel derived ion-storage films. Solid State Ionics, 118, 1999, 195–214.CrossRefGoogle Scholar
Opara Krašovec, U., Orel, B. and Reisfeld, R.Electrochromism of CeVO4 and Ce/V-oxide ion-storage films prepared by the sol–gel route. Electrochem. Solid-State Lett., 1, 1998, 104–6.CrossRefGoogle Scholar
Varsano, F., Decker, F., Masetti, E., Cardellini, F. and Licciulli, A.Optical and electrochemical properties of cerium–zirconium mixed oxide thin films deposited by sol–gel and r. f. sputtering. Electrochim. Acta, 44, 1999, 3149–56.CrossRefGoogle Scholar
Luo, X., Zhu, B., Xia, C., Niklasson, G. A. and Granqvist, C. G.Transparent ion-conducting ceria–zirconia films made by sol–gel technology. Sol. Energy Mater. Sol. Cells, 53, 1998, 341–7.CrossRefGoogle Scholar
Veszelei, M., Mattsson, Strømme M., Kullman, L., Azens, A. and Granqvist, C. G.Zr–Ce oxides as candidates for optically passive counter electrodes. Sol. Energy Mater. Sol. Cells, 56, 1999, 223–30.CrossRefGoogle Scholar
Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Mattson, Strømme M., Veszelei, M. and Vaivars, G.Recent advances in electrochromics for smart windows applications. Sol. Energy, 63, 1998, 199–216.CrossRefGoogle Scholar
Svegl, F., Orel, B. and Hutchins, M. G.Structural and electrochromic properties of Co-oxide and Co/Al/Si-oxide films prepared by the sol–gel dip coating technique. J. Sol-Gel Sci. Technol., 8, 1997, 765–9.CrossRefGoogle Scholar
Canon, K. K.. Electrochromic device, Jpn. Kokai Tokkyo Koho, Japanese Patent JP 59,232,316; as cited in Chem. Abs. 102: P212,795, 1985.Google Scholar
Bertran, E., Corbella, C., Vives, M., Pinyol, A., Person, C. and Porqueras, I.RF sputtering deposition of Ag/ITO coatings at room temperature. Solid State Ionics, 165, 2003, 139–48.CrossRefGoogle Scholar
Serebrennikova, I. and Birss, V. I.Electrochemical behavior of sol–gel produced Ni and Ni–Co oxide films. J. Electrochem. Soc., 144, 1997, 566–73.CrossRefGoogle Scholar
Cogan, S. F., Anderson, E. J., Plante, T. D. and Rauh, R. D.Electrochemical investigation of electrochromism in transparent conductive oxides. Appl. Opt., 24, 1984, 2282–3.CrossRefGoogle Scholar
Rauf, I. A. and Walls, M. G.A comparative study of microstructure (in ITO films) and techniques (CTEM and STM). Ultramicroscopy, 35, 1991, 19–26.CrossRefGoogle Scholar
Ahn, K.-S., Nah, Y.-C. and Sung, Y.-E.Electrochromic properties of SnO2-incorporated Ni oxide films grown using a cosputtering system. J. Appl. Phys., 92, 2002, 7128–32.CrossRefGoogle Scholar
Chopra, K. L., Major, S. and Pandya, D. K.Transparent conductors: a status review. Thin Solid Films, 102, 1983, 1–46.CrossRefGoogle Scholar
Nagai, J.Electrochemical properties of ITO electrodes. Proc. SPIE, 3788, 1999, 22–5.CrossRefGoogle Scholar
Granqvist, C. G. and Hultåker, A.Transparent and conducting ITO films: new developments and applications. Thin Solid Films, 411, 2002, 1–5.CrossRefGoogle Scholar
Adurodija, F. O., Izumi, H., Ishihara, T., Yoshioka, H. and Motoyama, M.The electro-optical properties of amorphous indium tin oxide prepared at room temperature by pulsed laser deposition. Sol. Energy Mater. Sol. Cells, 71, 2002, 1–8.CrossRefGoogle Scholar
Svensson, J. S. E. M. and Granqvist, C. G.No visible electrochromism in high-quality e-beam evaporated In2O3:Sn films. Appl. Opt., 24, 1984, 2284–5.CrossRefGoogle Scholar
Armstrong, N. R., Liu, A. W. C., Fujihira, M. and Kuwana, T.Electrochemical and surface characterics of tin oxide and indium oxide electrodes. Anal. Chem., 48, 1976, 741–50.CrossRefGoogle Scholar
Yu, P. C., Haas, T., Goldner, R. B. and Cogan, S. F.Characterization of indium oxide for the use as a counter-electrode in an electrochromic device. Mater. Res. Soc. Symp. Proc., 210, 1991, 63–8.CrossRefGoogle Scholar
Corradini, A., Marinangeli, A. M. and Mastragostino, M.ITO as counter-electrode in a polymer based electrochromic device. Electrochim. Acta, 35, 1990, 1757–60.CrossRefGoogle Scholar
Hamberg, I. and Granqvist, C. G.Theoretical model for the optical properties of In2O3:Sn films in the 0.3–50 μm range. Proc. SPIE, 562, 1985, 137–46.CrossRefGoogle Scholar
Golden, S. J. and Steele, B. C. H.Variable transmission electrochromic windows utilizing tin-doped indium oxide counter electrodes. Appl. Phys. Lett., 59, 1991, 2357–9.Google Scholar
Kaneko, H. and Miyake, K.Effects of transparent electrode resistance on the performance characteristics of electrochemichromic cells. Appl. Phys. Lett., 49, 1986, 112–14.CrossRefGoogle Scholar
Yu, P. C., Haas, T. E., Goldner, R. B. and Cogan, S. F.Characterisation of indium-tin oxide for the use of counter electrode in an electrochromic device. Mater. Res. Soc. Symp. Proc., 210, 1991, 63–8.CrossRefGoogle Scholar
Coleman, J. P., Freeman, J. J., Lynch, A. T., Madhukar, P. and Wagenknecht, J. H.Unexpected yellow–blue electrochromism of ITO powders at modest potentials in aqueous electrolytes. Acta Chem. Scand., 52, 1998, 86–94.CrossRefGoogle Scholar
Ingram, M. D., Duffy, J. A. and Monk, P. M. S.Chronoamperometric response of the cell ITO | HxWO3 | PEO–H3PO4 (MeCN) | ITO. J. Electroanal. Chem., 380, 1995, 77–82.CrossRefGoogle Scholar
Steele, B. C. H. and Golden, S. J., Variable transmission electrochromic windows utilizing tin-doped indium oxide counterelectrodes. Appl. Phys. Lett., 59, 1991, 2357–9.CrossRefGoogle Scholar
Bressers, P. M. M. C. and Meulenkamp, E. A.Electrochromic behavior of indium tin oxide in propylene carbonate. J. Electrochem. Soc., 145, 1998, 2225–30.CrossRefGoogle Scholar
Radhakrisnan, S., Unde, S. and Mandale, A. B.Source of instability in solid state polymeric electrochromic cells: the deterioration of indium tin oxide electrodes. Mater. Chem. Phys., 48, 1997, 268–71.CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G.Electrochromism in Ir–Mg oxide films. Appl. Phys. Lett., 81, 2002, 928–9.CrossRefGoogle Scholar
Backholm, J., Azens, A. and Niklasson, G. A.Electrochemical and optical properties of sputter deposited Ir–Ta and Ir oxide thin films. Sol. Energy Mater. Sol. Cells, 90, 2006, 414–20.CrossRefGoogle Scholar
Orel, B., Maček, M. and Surca, A.Electrochromism of dip-coated Fe-oxide, Fe/Ti-oxide and Fe/Si-oxide films prepared by the sol–gel route. Proc. SPIE, 2255, 1994, 273–84.CrossRefGoogle Scholar
Schmitt, M. and Aegerter, M. A.Properties of electrochromic devices made with Nb2O5 and Nb2O5:X (X = Li, Ti, or Mo) as coloring electrode. Proc. SPIE, 3788, 1999, 75–83.CrossRefGoogle Scholar
Opara Krašovec, U., Orel, B., Hocevar, S. and Musevic, I.Electrochemical and spectro-electrochemical properties of SnO2 and SnO2/Mo transparent electrodes with high ion-storage capacity. J. Electrochem. Soc., 144, 1997, 3398–409.CrossRefGoogle Scholar
Orel, B., Opara Krašovec, U., Štangar, U. L. and Judenstein, P.All sol–gel electrochromic devices with Li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J. Sol–Gel Sci. Technol., 11, 1998, 87–104.CrossRefGoogle Scholar
Wang, Z., Hu, X. and Helmersson, U.Peroxo sol–gel preparation: photochromic/electrochromic properties of Mo–Ti oxide gels and thin films. J. Mater. Chem., 10, 2000, 2396–400.CrossRefGoogle Scholar
Acharya, B. S., Pradhan, L. D., Nayak, B. B. and Mishar, P.Vacancy-induced electronic states in substoichiometric V2 −xMoxO3±y thin films and powders: a soft X-ray emission study. Bull. Mater. Sci., 22, 1999, 981–6.CrossRefGoogle Scholar
Ashrit, P. V., Bader, G., Girouard, F. E., Truong, V.-V. and Yamaguchi, T.Optical properties of cermets consisting of metal in a WO3 matrix. Physica A, 157, 1989, 333–8.CrossRefGoogle Scholar
Avendaño, E., Azens, A., Niklasson, G. A. and Granqvist, C. G.Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta. Sol. Energy Mater. Sol. Cells, 84, 2004, 337–50.CrossRefGoogle Scholar
Avendaño, E., Azens, A., Isidorsson, J., Harmhag, R., Niklasson, G. A. and Granqvist, C. G.Optimized nickel-oxide-based electrochromic thin films. Solid State Ionics, 165, 2003, 169–73.CrossRefGoogle Scholar
Granqvist, C. G., Avendaño, E. and Azens, A.Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 442, 2003, 201–11.CrossRefGoogle Scholar
Avendaño, E., Azens, A., Niklasson, G. A. and Granqvist, C. G.Nickel-oxide based electrochromic films with optimized optical properties. J. Solid State Electrochem., 8, 2003, 37–9.CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G.Electrochromism of sputter deposited Ni–Cr oxide. J. Appl. Phys., 84, 1998, 6454–6.CrossRefGoogle Scholar
Miller, E. L. and Rocheleau, R. E.Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc., 144, 1997, 3072–7.CrossRefGoogle Scholar
Campet, G., Morel, B., Bourrel, M., Chabagno, J. M., Ferry, D., Garie, R., Quet, C., Geoffrey, C., Videau, J. J., Portier, J., Delmas, C. and Salardenne, J.Electrochemistry of nickel oxide films in aqueous and Li+ containing non-aqueous solutions: an application for a new lithium-based nickel oxide electrode exhibiting electrochromism by a reversible Li+ ion insertion mechanism. Mater. Sci. Eng. B, 8, 1991, 303–8.CrossRefGoogle Scholar
Šurca, A., Orel, B. and Pihlar, B.Characterisation of redox states of Ni(La)-hydroxide films prepared via the sol–gel route by ex situ IR spectroscopy. J. Solid State Electron., 2, 1998, 38–49.Google Scholar
Azens, A., Isidorsson, J., Karmhag, R. and Granqvist, C. G.Highly transparent Ni–Mg and Ni–V–Mg oxide films for electrochromic applications. Thin Solid Films, 422, 2002, 1–3.CrossRefGoogle Scholar
Torresi, S. I. C.The effect of manganese addition on nickel hydroxide electrodes with emphasis on its electrochromic properties. Electrochim. Acta, 40, 1995, 1101–7.CrossRefGoogle Scholar
Hutchins, M. G. and Murphy, T. P.The electrochromic behaviour of tin–nickel oxide. Sol. Energy Mater. Sol. Cells, 54, 1998, 75–84.CrossRefGoogle Scholar
Ferreira, F. F. and Fantini, M. C. A.Theoretical optical properties of composite metal–NiO films. J. Phys. D: Appl. Phys., 36, 2003, 2386–92.CrossRefGoogle Scholar
Kuzmin, A., Purans, J., Kalendarev, R., Pailharey, D. and Mathey, Y.XAS, XRD, AFM and Raman studies of nickel tungstate electrochromic thin films. Electrochim. Acta, 46, 2001, 2233–6.CrossRefGoogle Scholar
[Toma, H. E., Matsumoto, F. M. and Cipriano, C.Spectroelectrochemistry of the hexanuclear cluster Ru3O(acetate) 6-μ-(pyrazine) 3-{Fe(CN) 5}3n− and of its modified nickel electrode in aqueous solution. J. Electroanal. Chem., 346, 1993, 261–70.CrossRefGoogle Scholar
Orel, B., Macek, M., Lavrencic-Štanger, U. and Pihlar, B.Amorphous Nb/Fe-oxide ion-storage films for counter electrode applications in electrochromic devices. J. Electrochem. Soc., 145, 1998, 1607–14.CrossRefGoogle Scholar
Rosario, A. V. and Pereira, E. C.Lithium insertion in TiO2 doped Nb2O5 electrochromic thin films. Electrochim. Acta, 46, 2001, 1905–10.CrossRefGoogle Scholar
Gillet, P. A., Fourquet, J. L. and Bohnke, O.New electrochromic thin-film materials. Proc. SPIE, 1728, 1992, 82–91.CrossRefGoogle Scholar
Manno, D., Serra, A., Micocci, G., Siciliano, T., Filippo, E. and Tepore, A.Morphological, structural and electronic characterization of nanostructured vanadium–tin mixed oxide thin films. Sol. Energy Mater. Sol. Cells, 341, 2004, 68–76.Google Scholar
Wu, Y., Hu, L. L., Jiang, Z. H. and Ke, Q.Study on the electrochemical properties of Fe2O3–TiO2 films prepared by sol–gel. J. Electrochem. Soc., 144, 1997, 1728–34.CrossRefGoogle Scholar
Maček, M., Orel, B. and Meden, T.Electrochemical and structural characterisation of dip-coated Fe/Ti oxide films prepared by the sol–gel route. J. Sol–Gel. Sci. Technol., 8, 1997, 771–9.CrossRefGoogle Scholar
Bellenger, F., Chemarin, C., Deroo, D., Maximovitch, S., Šurca Vuk, A. and Orel, B.Insertion of lithium in vanadium and mixed vanadium–titanium oxide films. Electrochim. Acta, 46, 2001, 2263–8.CrossRefGoogle Scholar
Burdis, M. S.Properties of sputtered thin films of vanadium–titanium oxide for use in electrochromic windows. Thin Solid Films, 311, 1997, 286–98.CrossRefGoogle Scholar
Burdis, M. S., Siddle, J. R., Batchelor, R. A. and Gallego, J. M.V0.50Ti0.50Ox thin films as counter-electrodes for electrochromic devices. Sol. Energy Mater. Sol. Cells, 54, 1998, 93–8.CrossRefGoogle Scholar
Nagase, K., Shimizu, S., Miura, N. and Yamazoe, N.Electrochromism of vanadium–titanium oxide thin films prepared by spin-coating method. Appl. Phys. Lett., 61, 1992, 243–5.CrossRefGoogle Scholar
Özkan Zayim, E.Optical and electrochromic properties of sol–gel made anti-reflective WO3–TiO2 films. Sol. Energy Mater. Sol. Cells, 87, 2005, 695–703.CrossRefGoogle Scholar
Tacconi, N. R., Rajeshwar, K. and Lezna, R. O.Preparation, photoelectrochemical characterization, and photoelectrochromic behavior of metal hexacyanoferrate–titanium dioxide composite films. Electrochim. Acta, 45, 2000, 3403–11.CrossRefGoogle Scholar
Duffy, J. A. Bonding, Energy Levels and Inorganic Solids. London, 1990, Longmans.
Chen, W. and Kaneko, Y.Electrochromism of vanadium oxide films doped by rare-earth (Pr, Nd, Sm, Dy) oxides. J. Electroanal. Chem., 559, 2003, 83–6.CrossRefGoogle Scholar
Coluzza, C., Cimino, N., Decker, F., Santo, G. D., Liberatore, M., Zanoni, R., Bertolo, M. and Rosa, S. L.Surface analyses of In V oxide films aged electrochemically by Li insertion reactions. Phys. Chem. Chem. Phys., 5, 2003, 5489–98.CrossRefGoogle Scholar
Kaneko, Y., Mori, S. and Yamanaka, J.Synthesis of electrochromic praseodymium-doped vanadium oxide films by molten salt electrolysis. Solid State Ionics, 151, 2002, 35–9.CrossRefGoogle Scholar
Artuso, F., Picardi, G., Bonino, F., Decker, F., Benčič, S., Vuk, Šurca A., Opara Krašovec, U. and Orel, B.Fe-containing CeVO4 films as Li intercalation transparent counter-electrodes. Electrochim. Acta, 46, 2001, 2077–84.CrossRefGoogle Scholar
Štanger, U. L., Orel, B., Regis, A. and Colomban, P.Chromogenic WPA/TiO2 hybrid gels and films. J. Sol–Gel Sci. Technol., 8, 1997, 965–71.CrossRefGoogle Scholar
Rougier, A., Blyr, A., Garcia, J., Zhang, Q. and Impey, S. A.Electrochromic W–M–O (M = V, Nb) sol–gel thin films: a way to neutral colour. Sol. Energy Mater. Sol. Cells, 71, 2002, 343–57.CrossRefGoogle Scholar
Huguenin, F., Torresi, R. M., Buttry, D. A., da Silva, J. E. P. and Torresi, S. I. C.Electrochemical and Raman studies on a hybrid organic–inorganic nanocomposite of vanadium oxide and a sulfonated polyaniline. Electrochim. Acta, 46, 2001, 3555–62.CrossRefGoogle Scholar
Oliveira, H. P., Graeff, C. F. O., Zanta, C. L. P. S., Galina, A. C. and Gonçalves, P. J.Synthesis, characterization and properties of a melanin-like/vanadium pentoxide hybrid compound. J. Mater. Chem., 10, 2000, 371–5.CrossRefGoogle Scholar
NuLi, Y.-N., Fu, Z.-W., Chu, Y.-Q. and Qin, Q.-Z.Electrochemical and electrochromic characteristics of Ta2O5–ZnO composite films. Solid State Ionics, 160, 2003, 197–207.CrossRefGoogle Scholar
Vukovic, M., Cukman, D., Milun, M., Atanasoska, L. D. and Atanasoski, R. T.Anodic stability and electrochromism of electrodeposited ruthenium–iridium coatings on titanium. J. Electroanal. Chem., 330, 1992, 663–73.CrossRefGoogle Scholar
K. K. Canon. Electrochromic device, Jpn. Kokai Tokkyo Koho, Japanese Patent JP 6,004,925; as cited in Chem. Abs. 102: P212,797, 1985.
Marijan, D., Vukovic, M., Parvan, P. and Milun, M.Surface modification of Inconel-600 by growth of a hydrous oxide film. J. Appl. Electrochem., 28, 1998, 96–106.CrossRefGoogle Scholar
Chu, W. F., Hartmann, R., Leonhard, V. and Ganson, G.Investigations on counter electrode materials for solid state electrochromic systems. Mater. Sci. Eng. B, 13, 1992, 235–7.CrossRefGoogle Scholar
Lian, K. K. and Birss, V. I.Hydrous oxide growth on amorphous Ni–Co alloys. J. Electrochem. Soc., 1991, 1991, 2877–84.CrossRefGoogle Scholar
Hultåker, A., Jarrendahl, K., Lu, J., Granqvist, C. G. and Niklasson, G. A.Electrical and optical properties of sputter deposited tin doped indium oxide thin films with silver additive. Thin Solid Films, 392, 2001, 305–10.CrossRefGoogle Scholar
Coustier, F., Passerini, S. and Smyrl, W. H.Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation. Solid State Ionics, 100, 1997, 247–58.CrossRefGoogle Scholar
Fantini, M. C. A., Ferreira, F. F. and Gorenstein, A.Theoretical and experimental results on Au–NiO and Au–CoO electrochromic composite films. Solid State Ionics, 152–3, 2002, 867–72.CrossRefGoogle Scholar
Ferreira, F. F. and Fantini, M. C. A.Multilayered composite Au–NiOx electrochromic films. Solid State Ionics, 175, 2004, 517–20.CrossRefGoogle Scholar
He, T., Ma, Y., Cao, Y., Yin, Y., Yang, W. and Yao, J.Enhanced visible-light coloration and its mechanism of MoO3 thin films by Au nanoparticles. Appl. Surf. Sci., 180, 2001, 336–40.CrossRefGoogle Scholar
Yano, J., Hirayama, T., Yamasaki, S., Yamazaki, S. and Kanno, Y.Stable free-standing aramid resin film containing vanadium pentoxide and new colour electrochromism of the film by electrodeposition of gold. Electrochem. Commun., 3, 2001, 263–6.CrossRefGoogle Scholar
Nagase, K., Shimizu, Y., Miura, N. and Yamazoe, N.Electrochromism of gold–vanadium pentoxide composite thin films prepared by alternating thermal deposition. Appl. Phys. Lett., 9, 1994, 1059–61.CrossRefGoogle Scholar
Sichel, E. K. and Gittleman, G. I.Characteristics of the electrochromic materials Au–WO3 and Pt–WO3. J. Electron. Mater., 8, 1979, 1–9.CrossRefGoogle Scholar
Heszler, P., Reyes, L. F., Hoel, A., Landstrom, L., Lantto, V. and Granqvist, C. G.Nanoparticle films made by gas phase synthesis: comparison of various techniques and sensor applications. Proc. SPIE, 5055, 2003, 106–19.CrossRefGoogle Scholar
Park, K.-W.Electrochromic properties of Au–WO3 nanocomposite thin-film electrode. Electrochim. Acta, 50, 2005, 4690–3.CrossRefGoogle Scholar
Park, K.-W. and Sung, Y. E.Modulation of electrochromic performance and in situ observation of proton transport in Pt–RuO2 nanocomposite thin-film electrodes. J. Appl. Phys., 94, 2003, 7276–80.CrossRefGoogle Scholar
Park, K.-W. and Toney, M. F.Electrochemical and electrochromic properties of nanoworm-shaped Ta2O5–Pt thin-films. Electrochem. Commun., 7, 2005, 151–5.CrossRefGoogle Scholar
Chen, K. Y. and Tseung, A. C. C.Effect of Nafion dispersion on the stability of Pt/WO3 electrodes. J. Electrochem. Soc., 143, 1996, 2703–8.CrossRefGoogle Scholar
Strømme, M., Isidorsson, J., Niklasson, G. A. and Granqvist, C. G.Impedance studies on Li insertion electrodes of Sn oxide and oxyfluoride. J. Appl. Phys., 80, 1996, 233–41.CrossRefGoogle Scholar
Strømme, M., Gutarra, A., Niklasson, G. A. and Granqvist, C. G.Impedance spectroscopy on lithiated Ti oxide and Ti oxyfluoride thin films. J. Appl. Phys., 79, 1996, 3749–57.CrossRefGoogle Scholar
Gutarra, A., Azens, A., Stjerna, B. and Granqvist, C. G.Electrochromism of sputtered fluorinated titanium oxide thin films. Appl. Phys. Lett., 64, 1994, 1604–6.CrossRefGoogle Scholar
Strømme Mattson, M., Niklasson, G. A. and Granqvist, C. G.Diffusion of Li, Na, and K in fluorinated Ti dioxide films: applicability of the Anderson–Stuart model. J. Appl. Phys., 81, 1997, 2167–72.CrossRefGoogle Scholar
Azens, A., Stjerna, B. and Granqvist, C. G.Chemically enhanced sputtering in fluorine-containing plasmas: application to tungsten oxyfluoride. Thin Solid Films, 254, 1995, 1–2.CrossRefGoogle Scholar
Azens, A., Stjerna, B., Granqvist, C. G., Gabrusenoks, J. and Lusis, A.Electrochromism in tungsten oxyfluoride films made by chemically enhanced d.c. sputtering. Appl. Phys. Lett., 65, 1994, 1998–2000.CrossRefGoogle Scholar
Azens, A., Granqvist, C. G., Pentjuss, E., Gabrusenoks, J. and Barczynska, J.Electrochromism of fluorinated and electron-bombarded tungsten oxide. J. Appl. Phys., 78, 1995, 1968–74.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Metal oxides
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Metal oxides
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Metal oxides
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.008
Available formats
×