Published online by Cambridge University Press: 14 August 2009
A common theme links chemical, mechanical, and optical hardnesses. It is the gap in the bonding energy spectrum of materials. This gap determines molecular stability, and therefore “chemical hardness” (Pearson, 1997). Chemists call it the LUMO–HOMO gap between anti-bonding and bonding molecular orbitals (LUMO lowest unoccupied molecular orbital, HOMO highest occupied molecular orbital). Physicists call it the band gap between the conduction and valence energy bands (Burdett, 1995). It forms a basis for various properties, including chemical reactivity, elastic stiffnesses, plastic flow resistance (dislocation mobility), crystal structure stability, and optical polarizability (refractive indices). Some of the ways in which this unifying parameter connects chemical, mechanical, and optical properties will be discussed in this chapter.
Another unifying factor is the fact that, for axial bonds between atoms, a simple universal binding energy relationship (called the UBER) exists (Rose, Smith and Ferrante, 1983). Many bonding problems can be reduced to this single relationship which has the form of the “Rydberg function”, f(x) = Ax[exp(- Bx)], and is closely related to the Morse potential. Unfortunately, there is no corresponding universal description for shear deformations.
Partly through coincidence, the name “hardness” which materials engineers have used for centuries to describe mechanical stability was chosen by chemists in recent decades to describe atomic and molecular stability (Pearson, 1997). Happily, the same parameter applies for both chemical and physical properties. It also determines the optical “hardness” of transparent solids.
In solid mechanics, hardness means the resistance to deformation, both elastic and plastic.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.