Published online by Cambridge University Press: 05 June 2012
In this chapter, we lay some algebraic foundations for a systematic study of curves, specifically the question of factorizing polynomials in one or more variables. Later, we will return to more special topics in algebra, but till then this material will serve all our needs. We start by discussing the abstract concept of factorization in an arbitrary domain. In the succeeding section, we recall the elementary algebra associated to polynomials in a single variable; that provides a model for the algebra of polynomials in several variables, and is anyway of particular relevance to the geometry of curves. We devote a separate section to the special polynomials known as ‘forms’, crucial to understanding ‘tangents’ and ‘projective’ curves. Finally, we explain how some basic calculus ideas can be introduced for polynomials over arbitrary domains.
Factorization in Domains
Much of this book will centre around the concept of ‘factorizing’ polynomials. The domain ℤ of integers provides the model for the ideas, but we phrase the definitions for any domain D. Given elements a, b ∈ D we say that a is a factor of b, or that b is divisible by a, written a|b, when there exists an element c ∈ D with b = ac. (Note that according to this definition the zero element 0 is divisible by any element in D.) A factor is said to be trivial when it is a unit, otherwise it is proper.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.