Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-24T21:44:50.370Z Has data issue: false hasContentIssue false

Chapter 24 - The placenta

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 868 - 891
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fox, H., Sebire, N.. Pathology of the Placenta (Major Problems in Pathology), 3rd edn. Philadelphia PA: Elsevier-Saunders, 2007.Google Scholar
Denker, H.W.. Trophoblast-endometrial interactions at embryo implantation: a cell biological paradox. Trophoblast Res 1990;4: 329.Google Scholar
Aplin, J.D.. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci 1991;99: 681692.Google Scholar
Richart, R.. Studies of placental morphogenesis. 1. Radioautographic studies of human placenta utilizing tritiated thymidine. Proc Soc Exp Biol Med 1961;106: 829831.CrossRefGoogle Scholar
Galton, M.. DNA content of placental nuclei. J Cell Biol 1962;13: 183191.Google Scholar
Weinberg, P.C., Cameron, I.L., Parmley, T., et al. Gestatonal age and placental cellular replication. Obstet Gynecol 1970;36: 692696.Google Scholar
Geier, G., Schuhmann, R., Kraus, H.. Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten: autoradiographische Untersuchungen. Arch Gynakol 1975;218: 3137.Google Scholar
Tedde, G., Tedde Piras, A.. Mitotic index of the Langhans cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat 1978;100: 114119.Google Scholar
Kaufmann, P., Nagl, W., Fuhrmann, B.. Die funktionelle Bedeutung der Langhanszellen der menschlichen Placenter. Anat Anz 1983;77: 435436.Google Scholar
Arnholdt, H., Meisel, F., Fandrey, K., Lohrs, U.. Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;60: 365372.CrossRefGoogle ScholarPubMed
Carter, J.E.. Morphologic evidence of syncytial formation from the cytotrophoblastic cells. Obstet Gynecol 1964;23: 647656.Google Scholar
Enders, A.C.. Formation of syncytium from cytotrophoblast in the human placenta. Obstet Gynecol 1965;25: 378386.Google ScholarPubMed
Terzakis, J.A.. The ultrastructure of normal human first trimester placenta. J Ultrastruct Res 1963;9: 268284.CrossRefGoogle Scholar
Tighe, J.R., Garrod, P.R., Curran, R.C.. The trophoblast of the human chorionic villus. J Pathol Bacteriol 1967;93: 559567.Google Scholar
Contractor, S.F., Banks, R.W., Jones, C.J.P., et al. A possible role for placental lysosomes in the formation of villous syncytiotrophoblast. Cell Tissue Res 1977;178: 411419.Google Scholar
Hustin, J., Schaaps, J.P., Lambotte, R.. Anatomical studies of the utero-placental vascularization in the first trimester of pregnancy. Trophoblast Res 1988;3: 4960.Google Scholar
Schaaps, J.P., Hustin, J.. In vivo aspects of the materno-trophoblastic border during the first trimester of gestation. Trophoblast Res 1988;3: 3948.Google Scholar
Jauniaux, E., Jurkovic, D., Campbell, S.. Current topic: in vivo investigation of the placental circulation by Doppler echography. Placenta 1995;16: 323331.Google Scholar
Hustin, J.. Vascular physiology and pathophysiology of early pregnancy. In Bourne, T.H., Jauniaux, E., Jurkovic, D., eds. Transvaginal Colour Doppler. Berlin: Springer, 1995: 4756.CrossRefGoogle Scholar
Jauniaux, E., Gulbis, B., Burton, G.J.. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus-a review. Placenta 2003;24: S86S93.Google Scholar
Burton, G.J., Hempstock, J., Jauniaux, E.. Nutrition of the human fetus during the first trimester: review. Placenta 2001;22(suppl A): S70S77.Google Scholar
Boyd, J.D., Hamilton, W.J.. The Human Placenta. Cambridge, UK: Heffer, 1970.CrossRefGoogle Scholar
Robertson, W.B., Warner, B.. The ultrastructure of the human placental bed. J Pathol 1974;112: 203211.Google Scholar
Hamilton, W.J., Boyd, J.D.. Trophoblast in human uteroplacental arteries. Nature 1966;212: 906908.Google Scholar
Harris, J.W.S., Ramsey, E.M.. The morphology of human uteroplacental vasculature. Contrib Embryol 1966;38: 4358.Google Scholar
Robertson, W.B., Brosens, I., Dixon, G.. Uteroplacental vascular pathology. Eur J Obstet Gynecol Reprod Biol 1975;5: 4765.CrossRefGoogle ScholarPubMed
Castellucci, M., Scheper, M., Scheffen, W.E., et al. The development of the human placental villous tree. Anat Embryol 1990;181: 117128.Google Scholar
Ramsey, E.M.. Circulation in the placenta. In Villee, C.E., ed. Gestation: Transactions of the 5th Conference. New York: Macey Foundation, 1959: 77107.Google Scholar
Wilkin, P.. Pathologie du Placenta. Paris: Masson et Cie, 1965.Google Scholar
Gruenwald, P.. Maternal blood supply to the conceptus. Eur J Obstet Gynecol Reprod Biol 1975;5: 2330.CrossRefGoogle Scholar
Ramsey, E.M.. In discussion of P. Gruenwald. Eur J Obstet Gynecol Reprod Biol 1975;5: 31.Google Scholar
Simpson, R.A., Mayhew, T.M., Barnes, P.R.. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the dissector. Placenta 1992;13: 501512.CrossRefGoogle Scholar
Gaunt, M., Ockleford, C.D.. Microinjection of human placenta: 2. Biological application. Placenta 1986;7: 325332.Google Scholar
Voland, J.R., Frisman, D.M., Baird, S.M.. Presence of an endothelial antigen on the syncytiotrophoblast of human chorionic villi: detection by a monoclonal antibody. Am J Reprod Immunol Microbiol 1986;11: 2430.Google Scholar
Myatt, L., Brockman, D.E., Eis, A.L., et al. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 1993;14: 487495.Google Scholar
Getzowa, S., Sadowsky, A.. On the structure of the human placenta with full term and immature foetus, living or dead. J Obstet Gynaecol Commonw 1950;57: 388396.Google Scholar
Panigel, M., Anh, J.N.H.. Ultrastructure des cellules de Hofbauer dans le placenta humain. CR Seances Acad Sci 1964;258: 35563558.Google Scholar
Fox, H.. The incidence and significance of Hofbauer cells in the mature placenta. J Pathol Bacteriol 1967;93: 710717.Google Scholar
Castellucci, M., Zaccheo, D., Pescetto, G.. A three dimensional study of the normal human placental villous core. we. The Hofbauer cells. Cell Tissue Res 1980;210: 235247.CrossRefGoogle ScholarPubMed
Wetzka, B., Clark, D.E., Charnock-Jones, D.S., et al. Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod 1997;12: 847852.Google Scholar
Hauguel de Mouzon, S., Guerre-Millo, M.. The placenta cytokine network and inflammatory signals. Placenta 2006;27: 794796.Google Scholar
Gosseye, S., van der Veen, F.. HPL-positive infiltrating trophoblastic cells in normal and abnormal pregnancy. Eur J Obstet Gynecol Reprod Biol 1992;44: 8590.Google Scholar
Elliott, M.M., Kardana, A., Lustbader, J.W., et al. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine 1997;7: 1532.Google Scholar
Cole, L.A.. hCG, the wonder of today's science. Reprod Biol Endocrinol 2012;10: 24.Google Scholar
Rodway, M.R., Rao, Ch. V.. A novel perspective on the role of human chorionic gonadotropin during pregnancy and in gestational trophoblastic disease. Early Pregn Biol Med 1995;1: 176187.Google Scholar
Lacroix, M.C., Guibourdenche, J., Frendo, J.L., et al. Human placental growth hormone: a review. Placenta 2002;23(suppl A): S87S94.Google Scholar
Newbern, D., Freemark, M.. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011;18: 409416.Google Scholar
Nielsen, P.V., Pedersen, H., Kampmann, E.M.. Absence of human placental lactogen in an otherwise uneventful pregnancy. Am J Obstet Gynecol 1979;135: 322326.CrossRefGoogle Scholar
Borody, I.B., Carlton, M.A.. Isolated defect in human placental lactogen synthesis in a normal pregnancy. Case report. Br J Obstet Gynaecol 1981;88: 447449.Google Scholar
Alexander, I., Anthony, F., Letchworth, A.T.. Placental protein profile and glucose studies in a normal pregnancy with extremely low levels of human placental lactogen. Case report. Br J Obstet Gynaecol 1982;89: 241243.Google Scholar
Di Renzo, G.C., Angeschia, M.M., Volpe, E.. Deficiency of human placental lactogen in an otherwise normal pregnancy. J Obstet Gynaecol 1982;2: 153154.Google Scholar
Hubert, C., Descombey, D., Mondon, F., et al. Plasma human chorionic somatomammotropin deficiency in a normal pregnancy is the consequence of low concentration of messenger RNA coding for human chorionic somatomammatropin. Am J Obstet Gynecol 1983;147: 676678.Google Scholar
Sideri, M., De Virgiliis, G., Guidobono, F., et al. Immunologically undetectable human placental lactogen in a normal pregnancy. Case report. Br J Obstet Gynaecol 1983;90: 771773.Google Scholar
Wohlk, P., Nexo, E., Jorgensen, E.H., et al. Low or absent serum placental lactogen hormone in 2 normal pregnancies. Ugeskr Laeger 1984;146: 727729.Google Scholar
Barbieri, F., Botticelli, A., Consarino, R., et al. Failure of placenta to produce hPL in an otherwise uneventful pregnancy: a case report. Biol Res Pregnancy Perinatol 1986;7: 131133.Google Scholar
Simon, P., Decoster, C., Brocas, H., et al. Absence of human chorionic somatomammotropin during pregnancy associated with two types of gene deletion. Hum Genet 1986;74: 235238.Google Scholar
Trapp, M., De Wilde, R., Holzgreve, W., et al. A pregnancy without detectable human placental lactogen (hPL). Zentralbl Gynakol 1987;109: 130133.Google Scholar
Rygaard, K., Revol, A., Esquivel-Escobedo, D., et al. Absence of human placental lactogen and placental growth hormone (HGH-V) during pregnancy: PCR analysis of the deletion. Hum Genet 1998;102: 8792.Google Scholar
Riddick, D.H., Luciano, A.A., Kusmik, W.F., et al. Evidence for a nonpituitary source of amniotic fluid prolactin. Fertil Steril 1979;31: 3539.Google Scholar
Josimovich, J.B., Merisko, K., Boccella, L.. Amniotic prolactin control over amniotic and fetal extracellular fluid water and electrolytes in the rhesus monkey. Endocrinology 1977;100: 564570.Google Scholar
Demir, N., Celiloglu, M., Thomassen, P.A., et al. Prolactin and amniotic fluid electrolytes. Acta Obstet Gynecol Scand 1992;71: 197200.Google Scholar
Handwerger, S., Richards, R., Markoff, E.. Autocrine/paracrine regulation of prolactin release from human decidual cells. Ann N Y Acad Sci 1991;622: 111119.CrossRefGoogle ScholarPubMed
Reis, F.M., Viganò, P., Arnaboldi, E., et al. Expression of prolactin-releasing peptide and its receptor in the human decidua. Mol Hum Reprod 2002;8: 356362.Google Scholar
Handwerger, S., Harman, I., Golander, A., et al. Prolactin release from perifused human decidual explants; effects of decidual prolactin-releasing factor (PRL-RF) and prolactin release-inhibitory factor (PRL-IF). Placenta 1992;13: 5562.Google Scholar
Quagliarello, J., Szlachter, N., Steinetz, B.G., et al. Serial relaxin concentrations in human pregnancy. Am J Obstet Gynecol 1979;135: 4344.Google Scholar
Petraglia, F., Imperatore, A., Challis, J.R.. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 2010;31: 783816.Google Scholar
Clifton, V.L., Read, M.A., Boura, A.L., et al. Adrenocorticotropin causes vasodilatation in the human fetal-placental circulation. J Clin Endocrinol Metab 1996;81: 14061410.Google ScholarPubMed
Saeed, B.O., Weightman, D.R., Self, C.H.. Characterization of corticotropin-releasing hormone binding sites in the human placenta. J Recept Signal Transduct Res 1997;17: 647666.Google Scholar
Karteris, E., Grammatopoulos, D., Randeva, H., et al. Signal transduction characteristics of the corticotropin-releasing hormone receptors in the feto-placental unit. J Clin Endocrinol Metab 2000;85: 19891996.Google Scholar
van den Brûle, F., Berndt, S., Simon, N., et al. Trophoblast invasion and placentation: molecular mechanisms and regulation. Chem Immunol Allergy 2005;88: 163180.Google Scholar
McLean, M., Bisits, A., Davies, J., et al. A placental clock controlling the length of human-pregnancy. Nat Med 1995;1: 460463.CrossRefGoogle ScholarPubMed
Reis, F.M., Fadalti, M., Florio, P., et al. Putative role of placental corticotrophin-releasing factor in the mechanisms of human parturition. J Soc Gynecol Invest 1999;6: 109119.CrossRefGoogle ScholarPubMed
Fadalti, M., Pezzani, I., Cobellis, L., et al. Placental corticotropin-releasing factor: an update. Ann N Y Acad Sci 2000;900: 8994.Google Scholar
Pepels, P.P.L.M., Spaanderman, M.E.A., Bulten, J., et al. Placental urocortins and CRF in late gestation. Placenta 2009;30: 483490.Google Scholar
Makino, T., Nakazawa, K., Ishii, K., et al. Detection of immunoreactive human placental oxytocin and its contractile effect on the uterine muscle. Endocrinol Jpn 1983;30 : 389395.Google Scholar
Nakazawa, K., Makino, T., Iizuka, R., et al. Immunohistochemical study on oxytocin-like substance in the human placenta. Endocrinol Jpn 1984;31: 763768.Google Scholar
Mitchell, B.F., Chibbar, R.. Synthesis and metabolism of oxytocin in late gestation in human decidua. Adv Exp Med Biol 1995;395: 365380.Google Scholar
Fuchs, A.R., Fuchs, F., Husslein, P., et al. Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science 1982;215: 13961398.Google Scholar
Florio, P., Lombardo, M., Gallo, R., et al. Activin A, corticotropin-releasing factor and prostaglandin F2α increase immunoreactive oxytocin release from cultured human placental cells. Placenta 1996;17: 307311.Google Scholar
Nishimori, K., Young, L.J., Guo, Q., et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 1996;93: 1169911704.Google Scholar
Bajoria, R., Babawale, M.. Ontogeny of endogenous secretion of immunoreactive-thyrotropin releasing hormone by the human placenta. J Clin Endocrinol Metab 1998;83: 41484155.Google Scholar
Ferguson, J.E. 2nd, Gorman, J.V., Bruns, D.E., et al. Abundant expression of parathyroid hormone related peptide protein in human amnion and its association with labor. Proc Natl Acad Sci USA 1992;89: 83848388.Google Scholar
Fraioli, F., Genazzani, A.R.. Human placental β-endorphin. Gynecol Obstet Invest 1980;11: 3744.Google Scholar
Margioris, A.N., Grino, M., Protos, P., et al. Corticotropin-releasing hormone and oxytocin stimulate the release of placental proopiomelanocortin peptides. J Clin Endocrinol Metab 1988;66: 922926.CrossRefGoogle ScholarPubMed
Goland, R.S., Wardlaw, S.L., Stark, R.I., et al. Human plasma β-endorphin during pregnancy, labor, and delivery. J Clin Endocrinol Metab 1981;52: 7478.Google Scholar
Tan, L., Yu, P.H.. De novo biosynthesis of enkephalins and their homologues in the human placenta. Biochem Biophys Res Commun 1981;98: 752760.Google Scholar
Lemaire, S., Valette, A., Chouinard, L., et al. Purification and identification of multiple forms of dynorphin in human placenta. Neuropeptides 1983;3: 181191.Google Scholar
Valette, A., Desprat, R., Cros, J., et al. Immunoreactive dynorphine in maternal blood, umbilical vein and amniotic fluid. Neuropeptides 1986;7: 145151.Google Scholar
Galán Galán, F., Balbontin, F.C., Cano, R.P., et al. Is there an extrathyroidal source of calcitonin during pregnancy? Acta Endocrinol (Copenh) 1984;105: 266270.Google Scholar
Balabanova, S., Kruse, B., Wolf, A.S.. Calcitonin secretion by human placental tissue. Acta Obstet Gynecol Scand 1987;66: 323326.Google Scholar
Kovacs, C.S.. Bone development in the fetus and neonate: role of the calciotropic hormones. Curr Osteoporos Rep 2011;9: 274283.Google Scholar
Li, H.Y., Shen, J.T., Chang, S.P., et al. Calcitonin promotes outgrowth of trophoblast cells on endometrial epithelial cells: involvement of calcium mobilization and protein kinase C activation. Placenta 2008;29: 2029.Google Scholar
Tsatsaris, V., Tarrade, A., Merviel, P., et al. Calcitonin gene-related peptide (CGRP) and CGRP receptor expression at the human implantation site. J Clin Endocrinol Metab 2002;87: 43834390.Google Scholar
Dong, Y.L., Vegiraju, S., Chauhan, M., et al. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol 2004;286: H230H239.Google Scholar
Dong, Y.L., Reddy, D.M., Green, K.E.. Calcitonin gene-related peptide (CALCA) is a proangiogenic growth factor in the human placental development. Biol Reprod 2007;76: 892899.Google Scholar
Green, K.E., Thota, C., Hankins, G.D., et al. Calcitonin gene-related peptide stimulates human villous trophoblast cell differentiation in vitro. Mol Hum Reprod 2006;12: 443450.Google Scholar
Di Iorio, R., Marinoni, E., Letizia, C., et al. Adrenomedullin production is increased in normal human pregnancy. Eur J Endocrinol 1999;140: 201206.Google Scholar
Jerat, S., DiMarzo, L., Morrish, D.W., et al. Adrenomedullin-induced dilation of human placental arteries is modulated by an endothelium-derived constricting factor. Regul Pept 2008;146: 183188.Google Scholar
Zhang, X., Green, K.E., Yallampalli, C., et al. Adrenomedullin enhances invasion by trophoblast cell lines. Biol Reprod 2005;73: 619626.Google Scholar
Penchalaneni, J., Wimalawansa, S.J., Yallampalli, C.. Adrenomedullin antagonist treatment during early gestation in rats causes fetoplacental growth restriction through apoptosis. Biol Reprod 2004;71: 14751483.Google Scholar
Havemann, D., Balakrishnan, M., Borahay, M., et al. Intermedin/adrenomedullin 2 is associated with implantation and placentation via trophoblast invasion in human pregnancy. J Clin Endocrinol Metab 2013;98: 695703.Google Scholar
Chauhan, M., Yallampalli, U., Dong, Y.L., et al. Expression of adrenomedullin 2 (ADM2)/intermedin (IMD) in human placenta: role in trophoblast invasion and migration. Biol Reprod 2009;81: 777783.Google Scholar
Chauhan, M., Balakrishnan, M., Yallampalli, U., et al. Adrenomedullin 2/intermedin regulates HLA-G in human trophoblasts. Biol Reprod 2011;85: 12321239.CrossRefGoogle ScholarPubMed
Chauhan, M., Yallampalli, U., Reed, L., et al. Adrenomedullin 2 antagonist infusion to rats during midgestation causes fetoplacental growth restriction through apoptosis. Biol Reprod 2006;75: 940947.Google Scholar
Petraglia, F., Calzà, L., Giardino, L., et al. Identification of immunoreactive neuropeptide-γ in human placenta: localization, secretion, and binding sites. Endocrinology 1989;124: 20162022.Google Scholar
Petraglia, F., Coukos, G., Battaglia, C., et al. 1989b. Plasma and amniotic fluid immunoreactive neuropeptide-Y level changes during pregnancy, labor, and at parturition. J Clin Endocrinol Metab 1989;69: 324328.Google Scholar
Robidoux, J., Simoneau, L., St-Pierre, S., et al. Human syncytiotrophoblast NPY receptors are located on BBM and activate PLC-to-PKC axis. Am J Physiol 1998;274: E502509.Google ScholarPubMed
Xiao, Q., Han, X., Arany, E., et al. Human placenta and fetal membranes contain peptide YY1–36 and peptide YY3–36. J Endocrinol 1998;156: 485492.Google Scholar
Brownbill, P., Bell, N.J., Woods, R.J., et al. Neurokinin B is a paracrine vasodilator in the human fetal placental circulation. J Clin Endocrinol Metab 2003;88: 21642170.CrossRefGoogle ScholarPubMed
Lovell, T.M., Woods, R.J., Butlin, D.J., et al. Identification of a novel mammalian post-translational modification, phosphocholine, on placental secretory polypeptides. J Mol Endocrinol 2007;39: 189198.Google Scholar
Iliodromiti, Z., Antonakopoulos, N., Sifakis, S., et al. Endocrine, paracrine, and autocrine placental mediators in labor. Hormones 2012;11: 397409.Google Scholar
Hassink, S.G., de Lancey, F., Sheslow, D.V., et al. Placental leptin: an important growth factor in intrauterine and neonatal development. Pediatrics 1997;100: 16.Google Scholar
Pérez-Pérez, A., Maymó, J., Gambino, Y., et al. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol Reprod 2009;81: 826832.Google Scholar
Ge, Y.C., Li, J.N., Ni, X.T., et al. Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts. Reproduction 2011;142: 369375.CrossRefGoogle ScholarPubMed
Maymó, J.L., Pérez, A.P., Gambino, Y., et al. Review: leptin gene expression in the placenta–regulation of a key hormone in trophoblast proliferation and survival. Placenta 2011;32(suppl 2):S146153.Google Scholar
Fahlbusch, F.B., Ruebner, M., Volkert, G., et al. Corticotrophin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts. Reprod Biol Endocrinol 2012;10: 80.Google Scholar
Marzioni, D., Fiore, G., Giordano, A., et al. Placental expression of substance P and vasoactive intestinal peptide: evidence for a local effect on hormone release. J Clin Endocrinol Metab 2005;90: 23782383.Google Scholar
Fraccaroli, L., Alfieri, J., Larocca, L., et al. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells. Br J Pharmacol 2009;156: 116126.Google Scholar
Mandang, S., Manuelpillai, U., Wallace, E.M. Oxidative stress increases placental and endothelial cell activin A secretion. J Endocrinol 2007;192: 485493.Google Scholar
Stoikos, C.J., Salamonsen, L.A., Hannan, N.J., et al. Activin A regulates trophoblast cell adhesive properties: implications for implantation failure in women with endometriosis-associated infertility. Hum Reprod 2010;25: 17671774.CrossRefGoogle ScholarPubMed
Camolotto, S., Racca, A., Rena, V., et al. Expression and transcriptional regulation of individual pregnancy-specific glycoprotein genes in differentiating trophoblast cells. Placenta 2010;31: 312319.Google Scholar
Fialova, L., Malbohan, I.M.. Pregnancy-associated plasma protein A (PAPP-A): theoretical and clinical aspects. Bratisl Lek Listy 2002;103: 194205.Google Scholar
Folkersen, J., Grudzinskas, J.G., Hindersson, P., et al. Pregnancy-associated plasma protein A: circulating levels during normal pregnancy. Am J Obstet Gynecol 1981;139: 910914.Google Scholar
Palm, M., Basu, S., Larsson, A., et al. A longitudinal study of plasma levels of soluble fms-like tyrosine kinase 1 (sFlt1), placental growth factor (PlGF), sFlt1: PlGF ratio and vascular endothelial growth factor (VEGF-A) in normal pregnancy. Acta Obstet Gynecol Scand 2011;90: 12441251.Google Scholar
Romero, R., Nien, J.K., Espinoza, J., et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008;21: 923.Google Scholar
Tuckey, R.C.. Progesterone synthesis by the human placenta. Placenta 2005;26: 273281.Google Scholar
Turnbull, A.C., Patten, P.T., Flint, A.P., et al. Significant fall in progesterone and rise in oestradiol levels in human peripheral plasma before onset of labour. Lancet 1974;303: 101103.Google Scholar
Parker, R.C., Illingworth, D.R., Bissonnette, J., et al. Endocrine changes during pregnancy in a patient with familial hypobetalipoproteinemia. N Engl J Med 1986;314: 557560.Google Scholar
Norman, J.E., Shennan, A., Bennett, P., et al. Trial protocol OPPTIMUM Does progesterone prophylaxis for the prevention of preterm labour improve outcome? BMC Pregn Childbirth 2012;12: 79.Google Scholar
Leslie, K.K., Zuckerman, D.J., Schruefer, J., et al. Oestrogen modulation with parturition in the human placenta. Placenta 1994;15: 7988.Google Scholar
Albrecht, E.D., Pepe, G.J.. Central integrative role of oestrogen in modulating the communication between the placenta and fetus that results in primate fetal-placental development. Placenta 1999;20: 129139.Google Scholar
Taylor, N.F.. Review: placental sulphatase deficiency. J Inherit Metab Dis 1982;5: 164176.Google Scholar
Nakayama, T., Yanaihara, T.. Placental sulphatase deficiency. Contrib Gynecol Obstet 1982;9: 145156.Google Scholar
Bradley, L.A., Canick, J.A., Palomaki, G.E., et al. Undetectable maternal serum estriol levels in the second trimester; risk of perinatal complications associated with placental sulfatase deficiency. Am J Obstet Gynecol 1997;176: 531535.Google Scholar
Cox, P., Evans, C.. Tissue Pathway for Histopathological Examination of the Placenta. London: Royal College of Pathologists, 2011 (http://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G108_TPplacenta_Sept11.pdf, accessed 12 September 2015).Google Scholar
Ganesan, R., Singh, N., McCluggage, W.G.. Standards and Datasets for Reporting Cancers: Dataset for Histological Reporting of Endometrial Cancer. London: Royal College of Pathologists, 2014 (https://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G090_EndometrialDataset_Feb14.pdf, accessed 12 September 2015).Google Scholar
Ngan, H.Y.S., Chan, K.K.L., Tam, K.F.. Gestational trophoblastic disease. TNM Online 2006; DOI: 10.1002/0471463736.tnmp35.pub2.Google Scholar
Bishop, P.W.. Immunohistochemistry Vade Mecum. 2013 (http://www.e-immunohistochemistry.info/ accessed 12 September 2015).Google Scholar
Johnson, P.M., Trenchev, P., Faulk, W.P.. Immunological studies of human placentae. Binding of complexed immunoglobulin by stromal endothelial cells. Clin Exp Immunol 1975;22: 133138.Google ScholarPubMed
Honig, A., Rieger, L., Kapp, M., et al. Immunohistochemistry in human placental tissue: pitfalls of antigen detection. J Histochem Cytochem 2005;53: 1413.Google Scholar
Quemelo, P.R., Lima, D.M., da Fonseca, B.A., et al. Detection of parvovirus B19 infection in formalin-fixed and paraffin-embedded placenta and fetal tissues. Rev Inst Med Trop Sao Paulo 2007;49: 103107.Google Scholar
Chard, T.. Placental synthesis. Clin Obstet Gynaecol 1986;13: 447467.Google Scholar
Malone, F.D., Canick, J.A., Ball, R.H., et al. First-trimester or second-trimester screening, or both, for Down's syndrome. N Engl J Med 2005;353: 20012011.Google Scholar
Weinans, M.J., Sancken, U., Pandian, R., et al. Invasive trophoblast antigen (hyperglycosylated human chorionic gonadotropin) as a first-trimester serum marker for Down syndrome. Clin Chem 2005;51: 12761279.Google Scholar
Christiansen, M., Sørensen, T.L., Nørgaard-Pedersen, B.. Human placental lactogen is a first-trimester maternal serum marker of Down syndrome. Prenat Diagn 2007;27: 15.Google Scholar
Heywood, W., Wang, D., Madgett, T.E., et al. The development of a peptide SRM-based tandem mass spectrometry assay for prenatal screening of Down syndrome. J Proteomics 2012;75: 32483257.Google Scholar
Leaños-Miranda, A., Campos-Galicia, I., Ramírez-Valenzuela, K.L., et al. Circulating angiogenic factors and urinary prolactin as predictors of adverse outcomes in women with preeclampsia. Hypertension 2013;61: 11181125.Google Scholar
Smith, G.C., Shah, I., Crossley, J.A., et al. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol 2006;107: 161166.CrossRefGoogle ScholarPubMed
Hui, D., Okun, N., Murphy, K., et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012;34: 142153.Google Scholar
Conde-Agudelo, A., Papageorghiou, A.T., Kennedy, S.H., et al. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis. BJOG 2013;120: 681694.Google Scholar
Akolekar, R., Syngelaki, A., Sarquis, R., et al. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn 2011;31: 6674.Google Scholar
Poon, L.C., Syngelaki, A., Akolekar, R., et al. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther 2013;33: 1627.Google Scholar
Soto-Wright, V., Bernstein, M., Goldstein, D.P., et al. The changing clinical presentation of complete molar pregnancy. Obstet Gynecol 1995;86: 775779.Google Scholar
Lurain, J.R.. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol 2010;203: 531539.Google Scholar
Fowler, D.J., Lindsay, I., Seckl, M.J., et al. Routine pre-evacuation ultrasound diagnosis of hydatidiform mole: experience of more than 1000 cases from a regional referral center. Ultrasound Obstet Gynecol 2006;27: 5660.Google Scholar
Hancock, B.W., Seckl, M.J., Berkowitz, R.S., Cole, L.A., eds. Gestational Trophoblastic Disease, 3rd edn. International Society for the Study of Trophoblastic Disease, 2009. (http://www.isstd.org/isstd/book.html, accessed 12 September 2015).Google Scholar
Cole, L.A.. Structurally related molecules of human chorionic gonadotrophin (hCG) in gestational trophoblastic diseases. In Hancock, B.W., Seckl, M.J., Berkowitz, R.S., Cole, L.A. et al., eds. Gestational Trophoblastic Disease, 3rd edn. 2009: 148183 (http://www.isstd.org/isstd/chapter05.html, accessed 12 September 2015).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×