Published online by Cambridge University Press: 08 August 2009
The genome sequences of two non-bilaterian animals, the cnidarians Nematostella vectensis and Hydra magnipapillata, have been recently completed. These new data lead to the fascinating result that the complement of Hox genes in the cnidarian ancestor is considerably lower than that in the bilaterians, although the complexity of their genome is otherwise similar (Technau et al. 2005). Thus, there is a correlation between the radiation of the Bilateria and the expansion of the Hox complex.
In the first part of this chapter, we shall present and discuss these data. In the second part, we shall present a novel hypothesis accounting for this phenomenon. In short, we surmise that the expansion of the Hox complex at the base of the Bilateria was due to a series of transposition events. Indeed, we hypothesise that the Hox genes themselves originate from transposons. The main support for this hypothesis is provided by the similarity between the homeodomain and the DNA-binding domain of bacterial integrases and eukaryotic transposases. We also examine some very precise rearrangements of the Hox complex in the Drosophilidae lineage. In the third part, we propose a scenario for the evolution of the Hox complex from the basic complement of Hox genes in the common ancestor of cnidarian and bilaterian animals. This scenario, based on our transposition hypothesis, accounts for several properties of the extant Hox genes.
TO SET THE SCENE: THE HOX EXPLOSION
The homeobox is a conserved motif found in a huge variety of eukaryotic genes, encoding a DNA-binding domain.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.