Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T10:44:50.391Z Has data issue: false hasContentIssue false

15 - Basal euarthropod development: a fossil-based perspective

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

The morphological gap between Euarthropoda (the crown group that contains all extant arthropods) and living arthropod-like animals such as onychophorans, tardigrades and pentastomids is bridged by a number of fossils known primarily from rocks some 520 to 490 million years old (e.g. Fuxianhuia, Chengjiangocaris, Shankouia, see Figure 15.1; cf. Waloszek et al. 2005). These centimetre-scale fossil animals illuminate critical steps in early arthropod evolution (particularly head and limb development) but provide a limited amount of developmental information because of a lack of early ontogenetic stages. Small individuals that might represent pre-mature stages are scarce or absent, and the degree of allometry among the available individuals is generally modest. A limited number of early arthropod taxa do show more substantial ontogenetic information (Waloszek and Maas 2005). This chapter reviews the morphological development of early arthropods from two perspectives. The first is that provided by ontogenetic series based on the well-preserved biomineralised exoskeletons of trilobites, the best represented arthropod taxon in Palaeozoic rocks, but one whose development is seldom considered in broader comparative context. The second is that provided by ‘Orsten’-type preserved faunas, in which the entire cuticle of numerous post-embryonic specimens of various species, mainly representatives of the crustacean evolutionary lineage (stem derivatives and Labrophora with phosphatocopines and members of the Eucrustacea; see Maas and Waloszek 2005) was replaced with spectacular fidelity by calcium phosphate in the absence of any compaction (Müller 1985).

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 281 - 298
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burmeister, H. 1846. The Organization of Trilobites. London: The Ray Society.Google Scholar
Chatterton, B. D. E. 1971. Taxonomy and ontogeny of Siluro-Devonian trilobites from near Yass, New South Wales. Palaeontographica, Abteilung A 137, 1–108.Google Scholar
Chatterton, B. D. E. 1994. Ordovician proetide trilobite Dimeropyge, with a new species from northwestern Canada. Journal of Paleontology 68, 541–556.CrossRefGoogle Scholar
Chatterton, B. D. E. & Speyer, S. E. 1997. Ontogeny. In Whittington, H. B. (ed.) Treatise on Invertebrate Paleontology, Part O, Arthropoda 1. Trilobita, revised. Boulder, CO: The Geological Society of America and Lawrence, KS: The University of Kansas, pp. 173–247.Google Scholar
Cisne, J. L., Chandlee, G. O., Rabe, B. D. & Cohen, J. A. 1980. Geographic variation and episodic evolution in an Ordovician trilobite. Science 209, 925–927.CrossRefGoogle Scholar
Cotton, T. J. & Fortey, R. A. 2005. Comparative morphology and relationships of the Agnostida. In Koenemann, S. & Jenner, R. A. (eds.) Crustacea and Arthropod Phylogeny. Crustacean Issues 16, Boca Raton, Florida: CRC Press, pp. 95–136.Google Scholar
Enghoff, H., Dohle, W. & Blower, J. G. 1993. Anamorphosis in millipedes (Diplopoda). The present state of knowledge and phylogenetic considerations. Zoological Journal of the Linnean Society 109, 103–234.CrossRefGoogle Scholar
Evitt, W. R. 1961. Early ontogeny in the trilobite family Asaphidae. Journal of Paleontology 35, 986–995.Google Scholar
Fusco, G. 2005. Trunk segment numbers and sequential segmentation in myriapods. Evolution & Development 7, 608–617.CrossRefGoogle ScholarPubMed
Fusco, G., Hughes, N. C., Webster, M. & Minelli, A. 2004. Exploring developmental modes in a fossil arthropod: growth and trunk segmentation of the trilobite Aulacopleura konincki. American Naturalist 163, 167–183.CrossRefGoogle Scholar
Høeg, J. T. & Kolbasov, G. A. 2002. Lattice organs in Y-cyprids of the Facetotecta and their significance in the phylogeny of the Crustacea Thecostraca. Acta Zoologica 83, 67–79.CrossRefGoogle Scholar
Hughes, N. C. 2003a. Trilobite tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology 41, 185–206.CrossRefGoogle Scholar
Hughes, N. C. 2003b. Trilobite body patterning and the evolution of arthropod tagmosis. BioEssays 25, 386–395.CrossRefGoogle Scholar
Hughes, N. C. 2005. Trilobite construction: building a bridge across the micro and macroevolutionary divide. In Briggs, D. E. G. (ed.) Evolving Form and Function: Fossils and Development. New Haven: Peabody Museum of Natural History, Yale University, pp. 138–158.Google Scholar
Hughes, N. C. 2007 The evolution of trilobite body patterning. Annual Reviews of Earth and Planetary Sciences 35, 401–434.
Hughes, N. C. & Chapman, R. E. 1995. Growth and variation in the Silurian proetide trilobite Aulacopleura konincki and its implications for trilobite palaeobiology. Lethaia 28, 333–353.CrossRefGoogle Scholar
Hughes, N. C., Minelli, A. & Fusco, G. 2006. The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32, 602–627.CrossRefGoogle Scholar
Maas, A. & Waloszek, D. 2005. Phosphatocopina – ostracode-like sister group of Eucrustacea. Hydrobiologia, 538, 139–152.CrossRefGoogle Scholar
McNamara, K. J., Yu, F. & Zhou, Z. 2003. Ontogeny and heterochrony in the oryctocephalid trilobite Arthricocephalus from the Early Cambrian of China. Special Papers in Palaeontology 70, 103–126.Google Scholar
Minelli, A., Fusco, G. & Hughes, N. C. 2003. Tagmata and segment specification in trilobites. Special Papers in Palaeontology 70, 31–43.Google Scholar
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society of London B 311, 67–73.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1986a. Arthropod larvae from the Upper Cambrian of Sweden. Transactions of the Royal Society of Edinburgh: Earth Sciences 77, 157–179.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1986b. Martinssonia elongata gen. et. sp. n., a crustacean-like euarthropod from the Upper Cambrian ‘Orsten’ of Sweden. Zoologica Scripta 15, 73–92.CrossRefGoogle Scholar
Müller, K. J. & Walossek, D. 1987. Morphology, ontogeny, and life habit of Agnostus pisiformis from the Upper Cambrian of Sweden. Fossils and Strata 19, 1–124.Google Scholar
Müller, K. J. & Walossek, D. 1988. External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Fossils and Strata 23, 1–70.Google Scholar
Paterson, J. R. & Edgecombe, G. D. 2006. The Early Cambrian trilobite family Emuellidae Pocock, 1970: Systematic position and revision of Australian species. Journal of Paleontology 80, 496–513.CrossRefGoogle Scholar
Peng, S., Babcock, L. E. & Lin, H. 2005. Polymerid Trilobites from the Cambrian of Northwestern Hunan, China, Vol. 2. Ptychopariida, Eodiscida, and Undetermined Forms. Beijing: Science Press.Google Scholar
Stein, M., Waloszek, D. & Maas, A. 2005. Oelandocaris oelandica and the stem lineage of Crustacea. In Koenemann, S. & Jenner, R. A. (eds.) Crustacea and Arthropod Phylogeny, Crustacean Issues 16, Boca Raton, Florida: CRC Press, pp. 55–71.Google Scholar
Stubblefield, C. J. 1926. Notes on the development of a trilobite, Shumardia pusilla (Sars). Zoological Journal of the Linnean Society of London 35, 345–372.CrossRefGoogle Scholar
Walossek, D. 1993. The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata 32, 1–202.Google Scholar
Walossek, D. & Müller, K. J. 1990. Upper Cambrian stem-lineage crustaceans and their bearing on the monophyletic origin of Crustacea and the position of Agnostus. Lethaia 23, 409–427.CrossRefGoogle Scholar
Walossek, D. & Müller, K. J. 1998. Cambrian ‘Orsten’-type arthropods and the phylogeny of Crustacea. In Fortey, R. A. & Thomas, R. (eds.) Arthropod Relationships (Systematics Association Special Volume 55). London: Chapman & Hall, pp. 139–153.Google Scholar
Waloszek, D., Chen, J., Maas, A. & Wang, X. 2005. Early Cambrian arthropods – new insights into arthropod head and structural evolution. Arthropod Structure & Development 34, 189–205.CrossRefGoogle Scholar
Waloszek, D. & Dunlop, J. A. 2002. A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45, 421–446.CrossRefGoogle Scholar
Waloszek, D. & Maas, A. 2005. The evolutionary history of crustacean segmentation: a fossil-based perspective. Evolution & Development 7, 515–527.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×